Structural interpenetration in metal-organic frameworks (MOFs) significantly impacts on their properties and functionalities. However, understanding the interpenetration on third-order nonlinear optics (NLO) of MOFs have not been reported to date. Herein, we report two 3D porphyrinic MOFs, a 2-fold interpenetrated [Zn(TPyP)(AC)] () and a noninterpenetrated [Zn(TPyP)(HO)(CO)] (), constructed from 5,10,15,20-tetra(4-pyridyl)porphyrin (TPyP(H)) and Zn(NO) (AC = acetate, CO = oxalate). achieves excellent optical limiting (OL) performance with a giant nonlinear absorption coefficient (3.61 × 10 cm/GW) and large third-order susceptibility (7.73 × 10 esu), which is much better than and other reported OL materials. The corresponding MOFs nanosheets are dispersed into a polydimethylsiloxane (PDMS) matrix to form highly transparent and flexible MOFs/PDMS glasses for practical OL application. In addition, the OL response optimized by adjusting the MOFs concentration in the PDMS matrix and the type of metalloporphyrin are discussed in the system. The theoretical calculation confirmed that the abundant π-π interaction from porphyrinic groups in the interpenetrated framework increased the electron delocalization/transfer and boosted the OL performance. This study opens a new avenue to enhance OL performance by the construction of interpenetrated structures and provides a new approach for the preparation of transparent and flexible MOF composites in nonlinear optical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c07803 | DOI Listing |
Sci Adv
January 2025
Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France.
Charge transport in materials has an impact on a wide range of devices based on semiconductor, battery, or superconductor technology. Charge transport in sliding charge density waves (CDW) differs from all others in that the atomic lattice is directly involved in the transport process. To obtain an overall picture of the structural changes associated to the collective transport, the large coherent x-ray beam generated by an x-ray free-electron laser (XFEL) source was used.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan.
The design and synthesis of nonlinear optical (NLO) materials are rapidly growing fields in optoelectronics. Considering the high demand for newly designed materials with superior optoelectronic characteristics, we investigated the doping process of Group-IIIA elements (namely, B, Al and Ga) onto alkali metal (AM = Li, Na and K)-supported COLi (AM@COLi) complexes to enhance their NLO response. The AM-COLi complexes retained their structural features following interaction with the Group-IIIA elements.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal and INESC TEC, Centre of Applied Photonics, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
Easily accessible through tabletop experiments, paraxial fluids of light are emerging as promising platforms for the simulation and exploration of quantumlike phenomena. In particular, the analogy builds on a formal equivalence between the governing model for a Bose-Einstein condensate under the mean-field approximation and the model of laser propagation inside nonlinear optical media under the paraxial approximation. Yet, the fact that the role of time is played by the propagation distance in the analog system imposes strong bounds on the range of accessible phenomena due to the limited length of the nonlinear medium.
View Article and Find Full Text PDFInorg Chem
January 2025
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
The utilization of nonlinear optical (NLO) crystals plays a crucial role in the contemporary laser industry, and the advancement of novel NLO-active units is essential for the exploration of NLO materials. Two novel organic-inorganic hybrid iodates, designated as (CNH)MoO(IO)·3HO () and (CNIH)MoO(IO)·4HO () were synthesized via mild hydrothermal methods, exhibiting band gaps of 3.75 and 3.
View Article and Find Full Text PDFSci Rep
January 2025
Photonics Laboratory, Tampere University, 33104, Tampere, Finland.
Supercontinuum generation in optical fiber involves complex nonlinear dynamics, making optimization challenging, and typically relying on trial-and-error or extensive numerical simulations. Machine learning and metaheuristic algorithms offer more efficient optimization approaches. We report here an experimental study of supercontinuum spectral shaping by tuning the phase of the input pulses, different optimization approaches including a genetic algorithm, particle swarm optimizer, and simulated annealing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!