Imaging of Actin Cytoskeletal Integrity During Aging in C. elegans.

Methods Mol Biol

Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA, USA.

Published: January 2022

The actin cytoskeleton plays a fundamental role in the regulation of multiple cellular pathways, including trafficking and locomotion. The functional integrity of the cytoskeleton is important during aging, as the decline of cytoskeletal integrity contributes to the physiological consequence of aging. Moreover, improving cytoskeletal form and function throughout aging is sufficient to drive life span extension and promote organismal health in multiple model systems. For these reasons, optimized protocols for visualization of the actin cytoskeleton and its downstream consequences on health span and life span are critical for understanding the aging process. In C. elegans, the actin cytoskeleton shows diverse morphologies across tissues, potentially due to the significantly different functions of each cell type. This chapter describes an imaging platform utilizing LifeAct to visualize the actin cytoskeleton in live, whole nematodes throughout the aging process and methods to perform follow-up studies on the life span and health span of these organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1661-1_5DOI Listing

Publication Analysis

Top Keywords

actin cytoskeleton
16
life span
12
cytoskeletal integrity
8
elegans actin
8
health span
8
aging process
8
aging
6
cytoskeleton
5
span
5
imaging actin
4

Similar Publications

LASP1 inhibits the formation of NETs and alleviates acute pancreatitis by stabilizing F-actin polymerization in neutrophils.

Biochem Biophys Res Commun

December 2024

Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Yangzhou University, Kunshan, Suzhou, Jiangsu, China. Electronic address:

Background: Neutrophil extracellular traps (NETs) play a significant role in the development of acute pancreatitis (AP). The actin-binding protein LASP1 regulates proteins associated with the cytoskeleton, yet its precise involvement in NETs and AP remains to be elucidated.

Methods: To investigate the role of LASP1 in NETs and AP, several bioinformatics methods, such as weighted gene co-expression network analysis (WGCNA), differential analysis, and least absolute shrinkage and selection operator (LASSO) regression, were utilized to screen for feature genes based on the Gene Expression Omnibus (GEO) dataset.

View Article and Find Full Text PDF

The functions of actin and its motor proteins myosins in the cytoplasm have been the subject of research for more than 100 years, but the existence and function of these proteins in the nucleus has been a matter of debate until recently. Recent data has clarified the role of actin and myosin molecules in controlling the dynamics of processes in the cell nucleus, chromatin organization and genome integrity. New microscopy techniques and the use of modified actin-binding probes have made it possible for the first time to directly visualize the polymerization of actin filaments in the nucleus of living cells.

View Article and Find Full Text PDF

Septin 9 (SEPT9), a GTPase, known as the fourth cytoskeleton, is widely expressed in various cells and tissues. The functions of SEPT9 are partly similar to other cytoskeletons as a structure protein. Further, SEPT9 can interact with other cytoskeletons, participating in actin dynamics and microtubule regulation.

View Article and Find Full Text PDF

Actin is an essential component of the cytoskeleton in every eukaryotic cell. Cytoplasmic β-and γ-actin are over 99% identical to each other at the protein level, but are encoded by different genes and play distinct roles in vivo. Blood cells, especially red blood cells (RBC), contain almost exclusively β-actin, and it has been generally assumed that this bias is dictated by unique suitability of β-actin for RBC cytoskeleton function due to its specific amino acid sequence.

View Article and Find Full Text PDF

Biological cells sample their surrounding microenvironments using nanoscale force sensors on the cell surfaces. These surface-based force and stress sensors generate physical and chemical responses inside the cell. The inherently well-connected cytoskeleton and its physical contacts with the force elements on the nuclear membrane lead these physicochemical responses to cascade all the way inside the cell nucleus, physically altering the nuclear state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!