The TWEAK/Fn14/CD163 axis-implications for metabolic disease.

Rev Endocr Metab Disord

Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK.

Published: June 2022

TWEAK (tumor necrosis factor-like weak inducer of apoptosis) is a member of the TNF superfamily that controls a multitude of cellular events including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. TWEAK control of these events is via an expanding list of intracellular signalling pathways which include NF-κB, ERK/MAPK, Notch, EGFR and AP-1. Two receptors have been identified for TWEAK - Fn14, which targets the membrane bound form of TWEAK, and CD163, which scavenges the soluble form of TWEAK. TWEAK appears to elicit specific events based on the receptor to which it binds, tissue type in which it is expressed, specific extrinsic conditions, and the presence of other cytokines. TWEAK signalling is protective in healthy tissues, but in chronic inflammatory states become detrimental to the tissue. Consistent data show a role for the TWEAK/FN14/CD163 axis in metabolic disease, chronic autoimmune diseases, and acute ischaemic stroke. Low circulating concentrations of soluble TWEAK are predictive of poor cardiovascular outcomes in those with and without diabetes. This review details the current understanding of the TWEAK/Fn14/CD163 axis as one of the chief regulators of immune signalling and its cell-specific role in metabolic disease development and progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156485PMC
http://dx.doi.org/10.1007/s11154-021-09688-4DOI Listing

Publication Analysis

Top Keywords

metabolic disease
12
tweak
8
form tweak
8
tweak/fn14/cd163 axis
8
tweak/fn14/cd163 axis-implications
4
axis-implications metabolic
4
disease tweak
4
tweak tumor
4
tumor necrosis
4
necrosis factor-like
4

Similar Publications

While recent studies suggested a potential causal link between type 1 diabetes mellitus (T1DM) but not type 2 diabetes mellitus (T2DM) and idiopathic pulmonary fibrosis (IPF), the involved mechanism remains unclear. Here, using a Mendelian randomization (MR) approach, we verified the causal relationship between the two types of diabetes mellitus and IPF and investigated the possible role of inflammation in the association between diabetes mellitus and IPF. Based on genome-wide association study (GWAS) summary data of T1DM, T2DM, and IPF, the univariable MR, multivariable MR (MVMR), and mediation MR were successively used to analyze the causal relationship.

View Article and Find Full Text PDF

To evaluate the accuracy of home self-monitoring portable blood glucose meters, we analyzed the current problems of patients using portable blood glucose meters and put forward reasonable suggestions. A self-designed questionnaire was used to survey 142 patients and 132 healthcare professionals. The questionnaire consisted of 16 items with an overall score ranging from 1 to 13 (with a higher score indicating better experience).

View Article and Find Full Text PDF

Background: Digital technologies for type 2 diabetes mellitus (T2DM) care hold great potential to improve patients' health in the long term. Only a subset of telemedicine offerings are digital interventions that meet the criteria for prescribable digitale Gesundheitsanwendung (digital health apps; DiGAs) in Germany. Digital treatments further provide vast amounts of patient data that are important to generate evidence.

View Article and Find Full Text PDF

Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson's disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism.

View Article and Find Full Text PDF

Three endophytic strains, Phomopsis sp., Fusarium proliferatum, and Tinctoporellus epimiltinus, isolated from various plants in the rainforest of the Philippines, were investigated regarding their ability to repress growth of the pathogenic fungus Colletotrichum musae on banana fruits causing anthracnose disease. An in vitro plate-to-plate assay and an in vivo sealed box assay were conducted, using commercial versus natural potato dextrose medium (PDA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!