Forest dynamics are shaped by both abiotic and biotic factors. Trees associating with different types of mycorrhizal fungi differ in nutrient use and dominate in contrasting environments, but it remains unclear whether they exhibit differential growth responses to local abiotic and biotic gradients where they co-occur. We used 9-year tree census data in a 25-ha old-growth temperate forest in Northeast China to examine differences in tree growth response to soil nutrients and neighborhood crowding between tree species associating with arbuscular mycorrhizal (AM), ectomycorrhizal (EM), and dual-mycorrhizal (AEM) fungi. In addition, we tested the role of individual-level vs species-level leaf traits in capturing differences in tree growth response to soil nutrients and neighborhood crowding across mycorrhizal types. Across 25 species, soil nutrients decreased AM tree growth, while neighborhood crowding reduced both AM and EM tree growth, and neither soil nor neighbors impacted AEM tree growth. Across mycorrhizal types, individual-level traits were stronger predictors of tree growth than species-level traits. However, most traits poorly mediated tree growth response to soil nutrients and neighborhood crowding. Our findings indicate that mycorrhizal types strongly shape differences in tree growth response to local soil and crowding gradients, and suggest that including plant-mycorrhizae associations in future work offers great potential to improve our understanding of forest dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-021-05034-2 | DOI Listing |
Tree Physiol
January 2025
Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
Tree bark is a crucial tissue that defends tree stems from invasions by microorganisms. However, our understanding of the constitutive chemical defense mechanisms of the tree barks remains limited. Our group recently discovered that the inner bark of Sorbus commixta exhibited potent inhibitory effects on the growth of the white-rot fungus, Trametes versicolor.
View Article and Find Full Text PDFMol Breed
January 2025
Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China.
Unlabelled: Previous studies illustrated that two banana GA20 oxidase2 (MaGA20ox2) genes, and , are implicated in controlling banana growth and development; however, the biological function of each gene remains unknown. Ma04g15900 protein (termed MaGA20ox2f in this article) is the closest homolog to the Rice SD1 (encoded by 'green revolution gene', ) in the banana genome. The expression of is confined to leaves, peduncles, fruit peels, and pulp.
View Article and Find Full Text PDFEcol Evol
January 2025
Conservation Science Research Group, School of Environmental and Life Sciences University of Newcastle Callaghan New South Wales Australia.
Amphibians are among the most threatened vertebrate taxa globally. Their global decline necessitates effective conservation actions to bolster populations across both the larval and adult stages. Constructing man-made ponds is one action proven to enhance reproduction in pond-breeding amphibians.
View Article and Find Full Text PDFPrz Gastroenterol
March 2024
Department of Hepato-gastroenterology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan.
Introduction: Stasis of bile flow can result in microbial colonization of the biliary tree. Cholangitis is a common adverse event linked to endoscopic retrograde cholangiopancreatography (ERCP).
Aim: To establish the bacterial profiles isolated from the bile sample and to evaluate the pre-ERCP risk factors predicting the microbial growth and development of post-ERCP cholangitis (PEC).
New Phytol
January 2025
Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA.
Wood formation is the Rosetta stone of tree physiology: a traceable, integrated record of physiological and morphological status. It also produces a large and persistent annual sink for terrestrial carbon, motivating predictive understanding. Xylogenesis studies have greatly expanded our knowledge of the intra-annual controls on wood formation, while dendroecology has quantified the environmental drivers of multi-annual variability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!