Metal-polymer composites (MPCs) with combined properties of metals and polymers have achieved much industrial success. However, metals in MPCs are thought to be ordinary and invariable electrically conductive fillers in supportive polymers to show limited use in modern technologies. This work that is disclosed here, for the first time, introduces stimuli-driven transition from biphasic to monophasic state of liquid metal into polymer science to form dynamic soft conductors from the binary metal-polymer composites. The binary metal that exhibits temperature-driven reversible transition between solid and liquid states via a biphasic state is fabricated. A conducting stretchable polymer composite is developed using the judiciously chosen biphasic binary metal that undergoes conductor to insulator transition upon stretching. Insulating stretched films become conducting upon heating. A "tube" model elegantly describes such distinctive deformation/temperature-dependent behaviors. Moreover, the conducting polymer composite shows decrease in its resistance upon increasing the sample temperature. The resistance can be tuned from 1 to 10 Ω depending on the state of binary metal in the phase diagram. This work would build the intimate and interesting connection between metal phases and polymer science toward next-generation soft conductors and beyond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202104634 | DOI Listing |
In Vitro Model
April 2022
Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea.
Objective: Polycaprolactone (PCL) is a widely applied biomaterial in bone tissue engineering (BTE) due to its superior mechanical properties and biodegradability. However, the high hydrophobicity and low cell adhesion properties of PCL show limited cell interactions. Herein, we prepared the porous PCL/DBP composites with improved cell adhesion through the addition of demineralized bone powder (DBP).
View Article and Find Full Text PDFIn Vitro Model
November 2023
Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan.
Previously, we have developed a novel porous hydroxyapatite/poly l-lactic-co-caprolactone (HA/PLCL) composite sandwich beam as a new scaffold material for bone regeneration. This work presents the study of bending fracture mechanisms and microdamage of porous hydroxyapatite/poly L-lactic-acid (HA/PLLA) sandwich beam, in comparison to the previous developed HA/PLCL sandwich beam. Both beams were fabricated using the sandwich method in which the single porous composite beams were layered in between two porous polymer layers of their kind.
View Article and Find Full Text PDFIn Vitro Model
November 2023
National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, 600 025 Tamilnadu India.
Nanostructured inorganic biomaterial emerged as the most essential platform to address traumatic and non-traumatic conditions of hard tissues in the current scenario. Synthetic inorganic biomaterials serve as an efficient and pathogen-free choice that overcomes the obstructions associated with autografts and allografts to promote new tissue regeneration, since nano-hydroxyapatite (nHAp) is a biomaterial that mimics the natural mineral composition of bones and teeth of human hard tissues, which is widely employed in orthopedics and dentistry. The nHAp-based materials exhibit bioactive, biocompatible, and osteoconductive features under in vitro and in vivo conditions.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
Polyurethanes (PU) make up a large portion of commodity plastics appearing in applications including insulation, footwear, and memory foam mattresses. Unfortunately, as thermoset polymers, polyurethanes lack a clear path for recycling and repurposing, creating a sustainability issue. Herein, using dynamic depolymerization, we demonstrate a simple one-pot synthesis for preparation of an upcycled polyurethane grafted graphene material (PU-GO).
View Article and Find Full Text PDFIn Vitro Model
June 2022
Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, 54896 Korea.
Objectives: This study aimed to fabricate porous PCL/GO scaffolds by adding graphene oxide (GO) which is a hydrophilic material to improve cell affinity of PCL. Calcium phosphate (CaP) coating was performed to enhance the bioactivity of the composite scaffold. The phase separation methods and the salt leaching process were used to impart high porosity and pores of various sizes in the scaffolds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!