Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bubble-like domains, typically a precursor to the electrical skyrmions, arise in ultrathin complex oxide ferroelectric-dielectric-ferroelectric heterostructures epitaxially clamped with flat substrates. Here, it is reported that these specially ordered electric dipoles can also be retained in a freestanding state despite the presence of inhomogeneously distributed structural ripples. By probing local piezo and capacitive responses and using atomistic simulations, this study analyzes these ripples, sheds light on how the bubbles are stabilized in the modified electromechanical energy landscape, and discusses the difference in morphology between bubbles in freestanding and as-grown states. These results are anticipated to be the starting point of a new paradigm for the exploration of electric skyrmions with arbitrary boundaries and physically flexible topological orders in ferroelectric curvilinear space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202105432 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!