Competing risks data usually arise when an occurrence of an event precludes other types of events from being observed. Such data are often encountered in a clustered clinical study such as a multi-center clinical trial. For the clustered competing-risks data which are correlated within a cluster, competing-risks models allowing for frailty terms have been recently studied. To the best of our knowledge, however, there is no literature on variable selection methods for cause-specific hazard frailty models. In this article, we propose a variable selection procedure for fixed effects in cause-specific competing risks frailty models using a penalized h-likelihood (HL). Here, we study three penalty functions, LASSO, SCAD, and HL. Simulation studies demonstrate that the proposed procedure using the HL penalty works well, providing a higher probability of choosing the true model than LASSO and SCAD methods without losing prediction accuracy. The proposed method is illustrated by using two kinds of clustered competing-risks cancer data sets.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.9197DOI Listing

Publication Analysis

Top Keywords

variable selection
12
frailty models
12
clustered competing-risks
12
cause-specific hazard
8
hazard frailty
8
competing-risks data
8
competing risks
8
lasso scad
8
data
5
penalized variable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!