This research deepens the analysis of the mineral water footprint, especially that of gold, in regions that are understudied and where mining has been an intensified extractive activity since the colonial era, as is the case in the northern part of department of Cauca in Colombia. Thus, the purpose was to estimate the water footprint indicators in gold mining in Suárez (Cauca, Colombia), to quantify the impacts generated by the non-returned water in the production process and the levels of pollutants in the wastewater, aimed to strength public policies, control strategies and mitigation that generates reductions in the impacts from mining activities on the environment. The blue water footprint was estimated in 79.91 m per kg of gold extracted and the gray water footprint was found to be in the range of 272,125.39 to 404,825.11 m per kg of gold extracted. The water footprint values obtained were compared with other mines with similar operations. These results generate a baseline for decision making, providing elements for environmental strategic planning, regulations and showing the great environmental pressure that gold activity exerts on water resources and the territories.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8436078PMC
http://dx.doi.org/10.1016/j.heliyon.2021.e07949DOI Listing

Publication Analysis

Top Keywords

water footprint
24
cauca colombia
12
water
8
footprint gold
8
suárez cauca
8
gold extracted
8
gold
6
footprint
5
gold extraction
4
extraction case-study
4

Similar Publications

Hydrogen (H), as a high-energy-density molecule, offers a clean solution to carry energy. However, the high diffusivity and low volumetric density of H pose a challenge for long-term storage and transportation. Liquid organic hydrogen carriers (LOHCs) have been suggested as a strategic way to store and transport hydrogen in stable molecules.

View Article and Find Full Text PDF

Most biomedical research on animals is based on the handful of the so-called standard model organisms, i.e. laboratory mice, rats or , but the keys to some important biomedical questions may simply not be found in these.

View Article and Find Full Text PDF

The complex synthetic approach and utilization of toxic chemicals restrain the commercialization of numerous existing superhydrophobic materials. This article focuses on the development of a halogen-free superhydrophobic material for self-cleaning applications. HMDS-modified MCM-41 is employed as the base material.

View Article and Find Full Text PDF

Membrane bioreactors (MBRs) have been widely used in the field of wastewater treatment because of their small footprint and high treatment efficiency. In this research, 10 rural wastewater treatment sites in China that employ the MBR process were systematically studied. Specifically, treatment of actual domestic wastewater using MBRs was examined by high-throughput 16S rRNA gene sequencing to explore the microbial community composition and perform function prediction.

View Article and Find Full Text PDF

Structural Changes in Atomically Precise Ag Nanoclusters upon Sequential Attachment and Detachment of Secondary Ligands.

ACS Nano

January 2025

DST Unit of Nanoscience (DST UNS) & Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.

Elucidating the structural dynamics of ligand-stabilized noble metal nanoclusters (NCs) is critical for understanding their properties and for developing applications. Ligand rearrangement at NC surfaces is an important contributor to structural change. In this study, we investigate the dynamic behavior of ligand-protected [Ag(L)] NC's (L = 1,3-benzenedithiol) interacting with secondary ligand 2,2'-[1,4-phenylenebis (methylidynenitrilo)] bis[benzenethiol] (referred to as ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!