Determination of heavy metal concentrations in vegetables and agricultural soils is crucial because high levels of heavy metals could affect soil quality, crop production and safe consumption of crops. A field study was conducted to determine the heavy metal concentrations and their transfer from agricultural soils to different parts (leaf, stem, and root) of (L.) Czern. In addition, potential health risks of contamination in the vegetables grown in the field were evaluated. Acid digestion method USEPA 3050B in combination with ICP-OES were used to analyze heavy metal (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) contents in both pre- and post-harvest soils and vegetable samples. Results showed that none of the heavy metals in soils had concentrations above the maximum safety limits based on the WHO, USEPA and CCME guidelines. Calculated metal transfer factor (MTF >1) showed accumulated Cd, Co, Ni, Pb and Zn in leaves, stems and roots, but Cu and Mn, as well as Cr were only accumulated in stems and roots, respectively. There were variations in heavy metal contents between the different parts of , but only Cd and Pb contents were above the maximum allowable limit recommended by FAO/WHO. PCA analysis was able to identify 4 major components corresponding to 38.38%, 28.98%, 14.39% and 10.67% of the total variance and PC1 was clearly associated to leaves of . Based on the MTF values, only Cd was found to have a value of HRI >1 compared to the other heavy metals, implying potential health risk associated with long-term ingestion of the vegetable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8436076 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2021.e07945 | DOI Listing |
J Transl Med
January 2025
Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China.
Background: Heavy metal exposure is an emerging environmental risk factor linked to cardiovascular disease (CVD) through its effects on vascular ageing. However, the relationship between heavy metal exposure and vascular age have not been fully elucidated.
Methods: This cross-sectional study analyzed data from 3,772 participants in the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2016.
Sci Total Environ
January 2025
Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, PR China. Electronic address:
Organic fertilizers were produced through maggot-composting (MC) and natural composting (NC) using swine manure, and the migration, contamination, and health risks of heavy metals (Zn, Cu, Cd, Cr, Pb) were evaluated within a fertilizer - soil - ryegrass - Rex rabbit system. After 70 days of treatment, heavy metals were concentrated by 43.23 % to 100 % in MC and 52.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India. Electronic address:
Increasing industrial pollution and certain hazardous agricultural practices have led to the discharge of heavy toxic metals into the environment. Among different bioremediation techniques, biomineralization is the synthesis of biomineral crystals extracellularly or intracellularly. Several bacteria, such as Bacillus cereus, Pseudomonas stutzeri, Bacillus subtilis, and Lactobacillus sphaericus have been found to induce heavy metal precipitation and mineralization for bioremediation.
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
Zhenjiang College, Zhenjiang, 212000, PR China.
Ascorbic acid (AA) is used as a food additive for its antibacterial and antioxidant properties. However, excessive intake of AA is harmful to humans. Therefore, the detection of Fe and AA is generally recognized to be meaningful.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China. Electronic address:
In this study, a large drinking water reservoir (Fengshuba Reservoir) was chosen as a representative case, and the bacterial communities in the sediments and soils of Water-level fluctuating zone (WLFZ) as well as their responses to heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) were systematically investigated. The results indicated that the abundance and diversity of the bacterial community obviously changed with seasonal hydrological variations in sediments, and the absolute abundance and composition of bacteria community differed significantly between the sediment phase and soil phase. Bacteria with the ability to degrade pollutants rapidly proliferate and gain ascendancy in the soil phase, with Burkholderia-Caballeronia-Paraburkholderia (B-C-P) and Bradyrhizobium forming the core of the largest community.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!