This study wants to investigate the effects of kombucha tea based on seagrapes on blood glucose levels, total cholesterol, and PGC-1α in Swiss albino mice that were given cholesterol- and fat-enriched diets (CFED). Anti-glycation, tyrosinase inhibitory, and α-glucosidase inhibitory activity were also determined. Forty male swiss webster albino mice weighing between 20 g-30 g were used for this study. Animals were distributed in random into 4 groups of 10 animals each; group A served as normal control (received standard dry pellet diet), group B were fed on CFED for 4 weeks, and groups C and D were fed on CFED and were administered 150 and 300 mg/kg of kombucha tea from seagrapes () (p.o.). study show that the activity of anti-glycation, L-Tyrosine, L-Dopa, α-glucosidase, and α-amylase inhibition were 62.79 ± 0.78, 9.05 ± 0.16, 27.14 ± 1.62, 90.42 ± 0.77, and 80.44 ± 1.00, respectively. Group C has a better activity in increasing PGC-1-alpha serum in mice than group D (p < 0.05). There were no meaningful differences between group C and D in blood cholesterol and blood glucose reduction (p = 0.222), both groups have the same effect in lowering total cholesterol and blood glucose in mice. In conclusion, kombucha tea from seagrapes has potential as an anti-ageing functional food.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8436079 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2021.e07944 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-530, Lodz, Poland.
In recent years, there has been a surge in the production of kombucha-a functional beverage obtained via microbial fermentation of tea. However, fresh, unpasteurized kombucha is sensitive to quality deterioration as a result of, among other factors, oxidation. The addition of hops seems to be promising, due to their antioxidative properties, which may improve the stability of kombucha.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
NBFC - National Biodiversity Future Center, 90133 Palermo, Italy; University of Naples Federico II, Department of Biology, Naples, Italy. Electronic address:
Bio-valorization of agri-food wastes lies in their possible conversion into fermented foodstuffs/beverages and/or biodegradable polymers such as bacterial cellulose. In this study, three different kombucha cultures were formulated using agri-food waste materials, citrus fruit residues and used coffee grounds, as alternative carbon and nitrogen sources, respectively. Over 21 days of fermentation, the kinetic profile was followed by monitoring cell number, pH variation, minerals, trace elements and production of bacterial cellulose.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Textile Chemistry, Bandung Polytechnic of Textile Technology, Bandung, West Java, 40272, Indonesia.
Kombucha is a popular fermented beverage that involves fermentation using a symbiotic culture of bacteria and yeast (SCOBY) and produces bacterial cellulose (BC). Carbon and nitrogen sources are essential in kombucha processing and BC production. However, studies on cost-effective BC production as an alternative source of leather have remained scarce.
View Article and Find Full Text PDFJ Food Sci
January 2025
Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, USA.
This research explores consumer preferences and emotional reactions to beverages made from roasted barley and examines the possibility of launching a new product line featuring Streaker barley grown in the Pacific Northwest. Utilizing hedonic scales, just-about-right scales, and check-all-that-apply questions, a sensory evaluation was conducted. The study reveals two distinct consumer clusters, each exhibiting contrasting preferences and responses to novel beverages incorporating Streaker barley.
View Article and Find Full Text PDFFoods
December 2024
Research Centre for Natural Resources, Environment and Society-CERNAS, 3045-601 Coimbra, Portugal.
Films and coatings based on biopolymers have been extensively studied in recent years since they have less impact on the environment, can be obtained from renewable sources, have good coating and film-forming capacity, are biodegradable and can have interesting nutritional properties. In the present study, sheep's cheese whey powder (SCWP) was used to produce edible cheese coatings. Six types of cheese samples were produced: without coating (CON); treated with natamycin (NAT); with SCWP coating without antimicrobials (WCO); with SCWP coating with a commercial bioprotective culture (WFQ); with SCWP coating with kombucha tea (WKO); and with SCWP coating with oregano essential oil (WEO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!