Introduction: Frailty is a medical syndrome, commonly affecting people aged 65 years and over and is characterized by a greater risk of adverse outcomes following illness or injury. Electronic medical records contain a large amount of longitudinal data that can be used for primary care research. Machine learning can fully utilize this wide breadth of data for the detection of diseases and syndromes. The creation of a frailty case definition using machine learning may facilitate early intervention, inform advanced screening tests, and allow for surveillance.
Objectives: The objective of this study was to develop a validated case definition of frailty for the primary care context, using machine learning.
Methods: Physicians participating in the Canadian Primary Care Sentinel Surveillance Network across Canada were asked to retrospectively identify the level of frailty present in a sample of their own patients (total n 5,466), collected from 2015-2019. Frailty levels were dichotomized using a cut-off of 5. Extracted features included previously prescribed medications, billing codes, and other routinely collected primary care data. We used eight supervised machine learning algorithms, with performance assessed using a hold-out test set. A balanced training dataset was also created by oversampling. Sensitivity analyses considered two alternative dichotomization cut-offs. Model performance was evaluated using area under the receiver-operating characteristic curve, F1, accuracy, sensitivity, specificity, negative predictive value and positive predictive value.
Results: The prevalence of frailty within our sample was 18.4%. Of the eight models developed to identify frail patients, an XGBoost model achieved the highest sensitivity (78.14%) and specificity (74.41%). The balanced training dataset did not improve classification performance. Sensitivity analyses did not show improved performance for cut-offs other than 5.
Conclusion: Supervised machine learning was able to create well performing classification models for frailty. Future research is needed to assess frailty inter-rater reliability, and link multiple data sources for frailty identification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431345 | PMC |
http://dx.doi.org/10.23889/ijpds.v6i1.1650 | DOI Listing |
BMC Pulm Med
January 2025
Universal Scientific Education and Research Network (USERN), Tehran, Iran.
Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
School of Computer Science and Technology, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, China.
Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.
View Article and Find Full Text PDFBMC Public Health
January 2025
Statistics, Brigham Young University, Provo, 84602, Utah, USA.
Background: Bullying, encompassing physical, psychological, social, or educational harm, affects approximately 1 in 20 United States teens aged 12-18. The prevalence and impact of bullying, including online bullying, necessitate a deeper understanding of risk and protective factors to enhance prevention efforts. This study investigated the key risk and protective factors most highly associated with adolescent bullying victimization.
View Article and Find Full Text PDFSci Rep
January 2025
Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland.
Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.
View Article and Find Full Text PDFSci Rep
January 2025
College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, 321004, China.
Athlete engagement is influenced by several factors, including cohesion, passion and mental toughness. Machine learning methods are frequently employed to construct predictive models as a result of their high efficiency. In order to comprehend the effects of cohesion, passion and mental toughness on athlete engagement, this study utilizes the relevant methods of machine learning to construct a prediction model, so as to find the intrinsic connection between them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!