Iron oxide magnetic nanoparticles have been employed as potential vehicles for a large number of biomedical applications, such as drug delivery. This article describes the synthesis, characterization and in vitro cytotoxic in COVID-19 cells evaluation of DMSA superparamagnetic iron oxide magnetic nanoparticles. Magnetite (FeO) nanoparticles were synthesized by co-precipitation of iron salts and coated with meso-2,3-dimercaptosuccinic acid (DMSA) molecule. Structural and morphological characterizations were performed by X-ray diffraction (XRD), Fourier transformed infrared (FT-IR), magnetic measurements (SQUID), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Our results demonstrate that the nanoparticles have a mean diameter of 12 nm in the solid-state and are superparamagnetic at room temperature. There is no toxicity of SPIONS-DMSA under the cells of patients with COVID-19. Taken together the results show that DMSA- FeO are good candidates as nanocarriers in the alternative treatment of studied cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8441750PMC
http://dx.doi.org/10.1002/slct.202101900DOI Listing

Publication Analysis

Top Keywords

iron oxide
12
oxide magnetic
8
magnetic nanoparticles
8
nanoparticles
5
potential dmsa-containing
4
iron
4
dmsa-containing iron
4
oxide nanoparticles
4
magnetic
4
nanoparticles magnetic
4

Similar Publications

Organic anode materials have garnered attention for use in rechargeable Li-ion batteries (LIBs) owing to their lightweight, cost-effectiveness, and tunable properties. However, challenges such as high electrolyte solubility and limited conductivity, restrict their use in full-cell LIBs. Here, we report the use of highly crystalline Cl-substituted contorted hexabenzocoronene (Cl-cHBC) as an efficient organic anode for full-cell LIBs.

View Article and Find Full Text PDF

In this study, we report the synthesis of iron oxide nanoparticles (FeONPs) using micro-emulsion-hydrothermal method. By adjusting the synthesis temperature, we successfully produced FeO nanorods and nanospheres. In addition, the 2-octanol, and the surfactant cetyltrimethylammonium bromide served as a solvent in the synthesis process.

View Article and Find Full Text PDF

This study investigates the biosynthesis of iron oxide nanoparticles (FeONPs) using the cell-free supernatant of Pseudomonas fluorescens. The synthesized FeONPs were characterized through UV-VIS, XRD, FTIR, FESEM, EDX, TEM, BET, and VSM analyses. The XRD results confirmed that FeONPs were successfully synthesized and EDX analysis indicated that iron accounted for 89.

View Article and Find Full Text PDF

High-Resolution Free-Breathing Chemical-Shift-Encoded MRI for Characterizing Lymph Nodes in the Upper Abdomen.

Invest Radiol

January 2025

From the Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands (I.T.M., M.C.M., S.Y., R.v.d.E., A.V., E.J.S., J.J.H., T.W.J.S.); and Department of Radiology, NYU Langone Health, New York, NY (T.K.B.).

Objectives: Accurate lymph node (LN) staging is crucial for managing upper abdominal cancers. Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging effectively distinguishes healthy and metastatic LNs through fat/water and -weighted imaging. However, respiratory motion artifacts complicate detection of abdominal LNs.

View Article and Find Full Text PDF

Background The sentinel lymph node biopsy (SLNB) is the standard method used to determine the stage of breast cancer in patients with no clinical signs of axillary involvement. The current gold standard for the intraoperative assessment of the axilla involves the use of dual radioisotope and patent blue dye. However, researchers have been studying the use of superparamagnetic iron oxide Magtrace® (Endomagnetics Limited, Cambridge, United Kingdom) agents as an alternative to overcome the limitations of the standard SLNB technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!