Primary Olfactory Ensheathing Cell Culture from Human Olfactory Mucosa Specimen.

Bio Protoc

Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Published: May 2017

The human olfactory mucosa is located in the middle and superior turbinates, and the septum of nasal cavity. Olfactory mucosa plays an important role in detection of odours and it is also the only nervous tissue that is exposed to the external environment. This property leads to easy access to the olfactory mucosa for achieving various researches. The lamina propria of olfactory mucosa consists of olfactory ensheathing cells (OECs) that cover the nerve fibers of olfactory. Here we describe a protocol for isolation of OECs from biopsy of human olfactory mucosa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410380PMC
http://dx.doi.org/10.21769/BioProtoc.2275DOI Listing

Publication Analysis

Top Keywords

olfactory mucosa
24
human olfactory
12
olfactory ensheathing
8
olfactory
8
mucosa
6
primary olfactory
4
ensheathing cell
4
cell culture
4
culture human
4
mucosa specimen
4

Similar Publications

Background/objectives: This study evaluated changes in circadian clock genes and mitochondrial function in a lead (Pb)-induced toxicity model of an olfactory epithelial cell line.

Methods: The DBC1.2 olfactory dark basal cell line was used.

View Article and Find Full Text PDF

Intranasal iron administration induces iron deposition, immunoactivation, and cell-specific vulnerability in the olfactory bulb of C57BL/6 mice.

Zool Res

January 2025

School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases, Qingdao University, Qingdao, Shandong, 266071, China. E-mail:

Iron is the most abundant transition metal in the brain and is essential for brain development and neuronal function; however, its abnormal accumulation is also implicated in various neurological disorders. The olfactory bulb (OB), an early target in neurodegenerative diseases, acts as a gateway for environmental toxins and contains diverse neuronal populations with distinct roles. This study explored the cell-specific vulnerability to iron in the OB using a mouse model of intranasal administration of ferric ammonium citrate (FAC).

View Article and Find Full Text PDF

Rationale: Smoking has been shown to be associated with circulating deficiencies in 25(OH)D3 and reduced sinonasal tissue levels of the active form of vitamin D, 1,25(OH)2D3. Given vitamin D's ability to reduce inflammation, we sought to examine if intranasal (IN) delivery of calcitriol [clinical analog of 1,25(OH)2D3] could reduce inflammation and improve disease severity in a murine model of chronic cigarette smoke-induced sinonasal inflammation (CS-SI).

Methods: Mice were exposed to CS 5 h/day, 5 days/week for 9 months, and then began IN calcitriol three times per week for 4 weeks.

View Article and Find Full Text PDF

Alprazolam (Alp), a triazolobenzodiazepine, is widely prescribed for the treatment of sleep disorders, anxiety, and panic disorder. While oral administration remains the standard route, its slow onset of action has prompted interest in intranasal delivery as an alternative, offers the potential for direct drug delivery to the brain. This study aims to develop a fast-acting intranasal formulation of Alp (Alp-nd).

View Article and Find Full Text PDF

Olfactory ensheathing cell (OEC) transplantation demonstrates promising therapeutic results in neurological disorders, such as spinal cord injury. The emerging cell-free secretome therapy compensates for the limitations of cell transplantation, such as low cell survival rates. However, the therapeutic benefits of the human OEC secretome remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!