Rictor Activates Cav 1 Through the Akt Signaling Pathway to Inhibit the Apoptosis of Gastric Cancer Cells.

Front Oncol

Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China.

Published: September 2021

AI Article Synopsis

  • Rictor is a protein linked to cancer progression, specifically in gastric cancer (GC), where its upregulation correlates with poor prognosis.
  • Rictor inhibits apoptosis (cell death) in GC cells and promotes their growth, while it also regulates Cav 1 expression through the Akt signaling pathway.
  • This research highlights Rictor's potential as a prognostic biomarker and a therapeutic target for patients with gastric cancer.

Article Abstract

Background: Rapamycin-insensitive companion of mammalian target of rapamycin (Rictor) protein is a core subunit of mammalian target of rapamycin complex 2, and is associated with cancer progression. However, the biological function of Rictor in cancer, particularly its clinical relevance in gastric cancer (GC) remains largely unknown.

Methods: Rictor expression and its association with clinicopathologic characteristics in GC were analyzed by immunohistochemistry. Effect of Rictor and Caveolin-1 (Cav 1) on GC cells apoptosis was evaluated overexpression experiment . Mechanisms of Rictor and Cav 1 in GC were explored through overexpression and knockdown, by immunofluorescence and western blot analyses.

Results: Rictor was upregulated in GC, and mainly located in the cytoplasm of cancer cells. Moreover, higher Rictor levels were associated with worse prognosis. Rictor could inhibit GC cell apoptosis and promote cell growth . The results of immunofluorescence revealed that Cav 1 localized in GC cell membrane but did not co-localize with Rictor. Further, Rictor regulated apoptosis-related proteins, long non-coding RNAs and also activated cellular signaling, thereby positively regulating Cav 1 expression. This effect was attenuated by the Akt inhibitor ly294002. Cav 1 did not significantly affect the ability of Rictor to inhibit tumor cell apoptosis.

Conclusions: Rictor is upregulated in GC and associated with worse prognosis. It inhibits tumor apoptosis and activates Cav 1 through the Akt signaling pathway to inhibit the apoptosis of GC cells. Rictor is, therefore, a promising prognostic biomarker and possible therapeutic target in GC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442624PMC
http://dx.doi.org/10.3389/fonc.2021.641453DOI Listing

Publication Analysis

Top Keywords

rictor
14
activates cav
8
cav akt
8
akt signaling
8
signaling pathway
8
pathway inhibit
8
inhibit apoptosis
8
gastric cancer
8
cancer cells
8
mammalian target
8

Similar Publications

RICTOR variants are associated with neurodevelopmental disorders.

Eur J Hum Genet

December 2024

Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut Thématique Interdisciplinaire TRANSPLANTEX NG, Université de Strasbourg, 4 rue Kirschleger, 67085, Strasbourg, France.

RICTOR is a key component of the mTORC2 signaling complex which is involved in the regulation of cell growth, proliferation and survival. RICTOR is highly expressed in neurons and is necessary for brain development. Here, we report eight unrelated patients presenting with intellectual disability and/or development delay and carrying variants in the RICTOR gene.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) are critical regulators of protein function and cellular signaling. While histone deacetylation by histone deacetylases (HDACs) is well established, the role of specific HDACs in modulating non-histone protein PTMs, particularly in an infectious context, is poorly understood. Here, we reveal a pivotal role for HDAC6 in orchestrating periodontal inflammation through its dual regulatory effects on FoxO1 acetylation and phosphorylation.

View Article and Find Full Text PDF

The mammalian target of rapamycin (mTOR), a serine/threonine kinase, promotes cell growth and inhibits autophagy. The following two complexes contain mTOR: mTORC1 with the regulatory associated protein of mTOR (RAPTOR) and mTORC2 with the rapamycin-insensitive companion of mTOR (RICTOR). The phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR signaling pathway is important in the intervertebral disk, which is the largest avascular, hypoxic, low-nutrient organ in the body.

View Article and Find Full Text PDF

Objective: We aim to explore the role of mechanistic target of rapamycin complex (mTORC) 2 in systemic lupus erythematosus (SLE) development, the in vivo regulation of mTORC2 by type I interferon (IFN) signaling in autoimmunity, and to use mTORC2 targeting therapy to ameliorate lupus-like symptoms in an in vivo lupus mouse model and an in vitro coculture model using human PBMCs.

Method: We first induced lupus-like disease in T cell specific Rictor, a key component of mTORC2, deficient mice by topical application of imiquimod (IMQ) and monitored disease development. Next, we investigated the changes of mTORC2 signaling and immunological phenotypes in type I IFNAR deficient Lpr mice.

View Article and Find Full Text PDF

Emerging evidence suggests the potential of rapamycin, an antibiotic from Streptomyces hygroscopicus that functions as a mechanistic target of rapamycin (mTOR) inhibitor, as a mimetic of caloric restriction (CR) for maintaining skeletal muscle health. Several studies showed that rapamycin administration (RAP) reduced appetite and energy intake. However, the physiological and molecular differences between RAP and CR in skeletal muscle are not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!