Background And Objectives: Multi-drug-resistant is associated with various infectious diseases that cannot be easily treated by antibiotics. However, bacteriophages have potential therapeutic applications in the control of multi-drug-resistant bacteria. In this study, we aimed to isolate and characterize of a lytic bacteriophage that can lyse specifically the multi-drug-resistant (MDR)
Materials And Methods: Lytic bacteriophage was isolated from Qaem hospital wastewater and characterized morphologically and genetically. Next-generation sequencing was used to complete genome analysis of the isolated bacteriophage.
Results: Based on the transmission electron microscopy feature, the isolated bacteriophage (vB-Ea-5) belongs to the family . vB-Ea-5 had a latent period of 25 minutes, a burst size of 13 PFU/ml, and a burst time of 40 min. Genome sequencing revealed that vB-Ea-5 has a 135324 bp genome with 41.41% GC content. The vB-Ea-5 genome codes 212 ORFs 90 of which were categorized into several functional classes such as DNA replication and modification, transcriptional regulation, packaging, structural proteins, and a host lysis protein (Holin). No antibiotic resistance and toxin genes were detected in the genome. SDS-PAGE of vB-Ea-5 proteins exhibited three major and four minor bands with a molecular weight ranging from 18 to 50 kD.
Conclusion: Our study suggests vB-Ea-5 as a potential candidate for phage therapy against MDR infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408028 | PMC |
http://dx.doi.org/10.18502/ijm.v13i2.5984 | DOI Listing |
Food Chem
January 2025
State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China. Electronic address:
Bacteriophages are promising alternatives for combating multidrug-resistant bacterial infections. Two lytic bacteriophages, named P1 and P3, targeting pathogenic Escherichia coli (ExPEC; strain TZ1_3) were isolated and evaluated for their potential ability to control pathogenic numbers either in ExPEC-contaminated food or ExPEC-infected mice. Results showed that phages significantly reduced ExPEC numbers within 6 and 12 h in contaminated water, milk, beef, and chicken when applied at 10 plaque-forming units (PFU).
View Article and Find Full Text PDFPoult Sci
January 2025
Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China. Electronic address:
Escherichia coli (E. coli) is a significant pathogen responsible for intestinal infections and foodborne diseases. The rise of antibiotic resistance poses a significant challenge to global public health.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
Bovine mastitis is a considerable challenge within the dairy industry, causing significant financial losses and threatening public health. The increased occurrence of methicillin-resistant Staphylococcus aureus (MRSA) has provoked difficulties in managing bovine mastitis. Bacteriophage therapy presents a novel treatment strategy to combat MRSA infections, emerging as a possible substitute for antibiotics.
View Article and Find Full Text PDFPoult Sci
January 2025
Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan. Electronic address:
Escherichia coli (E. coli) is a widely distributed pathogenic bacterium that poses a substantial hazard to poultry, leading to the development of a severe systemic disease known as colibacillosis. Colibacillosis is involved in multimillion-dollar losses to the poultry industry each year worldwide.
View Article and Find Full Text PDFEnviron Microbiome
January 2025
Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
Background: Viruses that infect prokaryotes (phages) constitute the most abundant group of biological agents, playing pivotal roles in microbial systems. They are known to impact microbial community dynamics, microbial ecology, and evolution. Efforts to document the diversity, host range, infection dynamics, and effects of bacteriophage infection on host cell metabolism are extremely underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!