A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evidence-based complementary and alternative medicine bioinformatics approach through network pharmacology and molecular docking to determine the molecular mechanisms of Erjing pill in Alzheimer's disease. | LitMetric

Erjing pill, a Traditional Chinese Medicine (TCM) formulation composed of and , has an important role in the treatment of Alzheimer's disease (AD). However, the underlying mechanisms of the action of Erjing pill in AD have remained elusive. In the present study, the key ingredients of Erjing pill were investigated and the active components and their mechanisms of action on AD were analyzed based on networks pharmacology. By using the TCM and TCM Systems Pharmacology and databases, the components of Erjing pill were screened and the data were captured using Discovery Studio. The SwissTarget webserver database was used to predict the potential protein targets of Erjing pill components for pathologies related to AD. The data were further analyzed with the disease targets of AD based on analysis of the Online Mendelian Inheritance in Man, DiGSeE and Therapeutic Target Database. Subsequent analysis of mechanistic pathways of the screened components and protein targets allowed us to construct a network by using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, which revealed potential molecular mechanisms of Erjing pill against AD. Finally, the protective effect of three active components on neurons was verified using an injury model of PC12 cells induced by Aβ. The results indicated that 65 bioactive components of Erjing pill, including lauric acid and zederone, and 6 targets, including acetylcholinesterase, butylcholinesterase and amyloid protein precursor, were closely associated with the prevention and treatment of AD. The molecular components of Erjing pill were indicated to be involved in various biological signaling processes, mainly in synaptic signal transmission, transsynaptic signal transmission and chemical synaptic transmission. Furthermore, related pathways targeted by Erjing pill in AD included the regulation of neuroactive ligand-receptor interactions, the PI3K-Akt signaling pathway, serotoninergic synapses, calcium signaling pathways and dopaminergic synapses. A cell viability assay indicated that the compounds (polygonatine A, polygonatine C and 4',5-dihydroxyflavone) assessed were able to significantly improve the survival rate and increase the Ca level in a PC12 cell model of AD induced by amyloid-β. The present study revealed that the mechanisms of action of Erjing pill to prevent and treat AD included a multicompound, multitarget and multipathway regulatory network.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8438686PMC
http://dx.doi.org/10.3892/etm.2021.10687DOI Listing

Publication Analysis

Top Keywords

erjing pill
44
mechanisms action
12
components erjing
12
erjing
11
pill
11
molecular mechanisms
8
mechanisms erjing
8
alzheimer's disease
8
action erjing
8
active components
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!