Nitrogen (N) accumulation in the blood and tissues can occur due to breath-hold (BH) diving. Post-dive venous gas emboli have been documented in commercial BH divers (Ama) after repetitive dives with short surface intervals. Hence, BH diving can theoretically cause decompression illness (DCI). "Taravana," the diving syndrome described in Polynesian pearl divers by Cross in the 1960s, is likely DCI. It manifests mainly with cerebral involvements, especially stroke-like brain attacks with the spinal cord spared. Neuroradiological studies on Ama divers showed symptomatic and asymptomatic ischemic lesions in the cerebral cortex, subcortex, basal ganglia, brainstem, and cerebellum. These lesions localized in the external watershed areas and deep perforating arteries are compatible with cerebral arterial gas embolism. The underlying mechanisms remain to be elucidated. We consider that the most plausible mechanisms are arterialized venous gas bubbles passing through the lungs, bubbles mixed with thrombi occlude cerebral arteries and then expand from N influx from the occluded arteries and the brain. The first aid normobaric oxygen appears beneficial. DCI prevention strategy includes avoiding long-lasting repetitive dives for more than several hours, prolonging the surface intervals. This article provides an overview of clinical manifestations of DCI following repetitive BH dives and discusses possible mechanisms based on clinical and neuroimaging studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8446421PMC
http://dx.doi.org/10.3389/fphys.2021.711850DOI Listing

Publication Analysis

Top Keywords

repetitive dives
12
decompression illness
8
breath-hold diving
8
ischemic lesions
8
venous gas
8
surface intervals
8
repetitive
4
illness repetitive
4
repetitive breath-hold
4
diving
4

Similar Publications

Introduction: Ultrasound-guided regional anaesthesia enhances pain control, patient outcomes and lowers healthcare costs. However, teaching this skill effectively presents challenges with current training methods. Simulation-based medical education offers advantages over traditional methods.

View Article and Find Full Text PDF

Introduction: A 54-year-old, previously healthy Caucasian male diver was on a 22-day liveaboard diving holiday. During this time, he performed 75 open-circuit dives, of which 72 were with enriched air nitrox. All dives were within recreational length and depth.

View Article and Find Full Text PDF

Endothelial function declines with aging and independently predicts future cardiovascular disease (CVD) events. Diving also impairs endothelial function in humans. Yet, dolphins, being long-lived mammals adapted to diving, undergo repetitive cycles of tissue hypoxia-reoxygenation and disturbed shear stress without manifesting any apparent detrimental effects, as CVD is essentially nonexistent in these animals.

View Article and Find Full Text PDF

Scuba diving was previously excluded because of hypoglycemic risks for patients with type 1 diabetes mellitus(T1DM). Specific eligibility criteria and a safety protocol have been defined, whereas continuous glucose monitoring (CGM) systems have enhanced diabetes management. This study aims to assess the feasibility and accuracy of CGM Dexcom G7 and Free Style Libre 3 in a setting of repetitive scuba diving in T1DM, exploring the possibility of nonadjunctive use.

View Article and Find Full Text PDF

Breath-hold divers, also known as freedivers, are at risk of specific injuries that are unique from those of surface swimmers and compressed air divers. Using peer-reviewed scientific research and expert opinion, we created a guide for medical providers managing breath-hold diving injuries in the field. Hypoxia induced by prolonged apnea and increased oxygen uptake can result in an impaired mental state that can manifest as involuntary movements or full loss of consciousness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!