Reduced integrity of neural pathways from frontal to sensory cortices has been suggested as a potential neurobiological basis of attention-deficit hyperactivity disorder. Neurofeedback has been widely applied to enhance reduced neural pathways in attention-deficit hyperactivity disorder by repeated training on a daily temporal scale. Clinical and model-based studies have demonstrated that fluctuations in neural activity underpin sustained attention deficits in attention-deficit hyperactivity disorder. These aberrant neural fluctuations may be caused by the chaos-chaos intermittency state in frontal-sensory neural systems. Therefore, shifting the neural state from an aberrant chaos-chaos intermittency state to a normal stable state with an optimal external sensory stimulus, termed chaotic resonance, may be applied in neurofeedback for attention-deficit hyperactivity disorder. In this study, we applied a neurofeedback method based on chaotic resonance induced by "reduced region of orbit" feedback signals in the Baghdadi model for attention-deficit hyperactivity disorder. We evaluated the stabilizing effect of reduced region of orbit feedback and its robustness against noise from errors in estimation of neural activity. The effect of chaotic resonance successfully shifted the abnormal chaos-chaos intermittency of neural activity to the intended stable activity. Additionally, evaluation of the influence of noise due to measurement errors revealed that the efficiency of chaotic resonance induced by reduced region of orbit feedback signals was maintained over a range of certain noise strengths. In conclusion, applying chaotic resonance induced by reduced region of orbit feedback signals to neurofeedback methods may provide a promising treatment option for attention-deficit hyperactivity disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442914 | PMC |
http://dx.doi.org/10.3389/fncom.2021.726641 | DOI Listing |
Neuroinformatics
January 2025
Department of Information Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram, Chennai, 600089, India.
Brain tumours are one of the most deadly and noticeable types of cancer, affecting both children and adults. One of the major drawbacks in brain tumour identification is the late diagnosis and high cost of brain tumour-detecting devices. Most existing approaches use ML algorithms to address problems, but they have drawbacks such as low accuracy, high loss, and high computing cost.
View Article and Find Full Text PDFChaos
January 2025
Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309-0526, USA.
This paper focuses on distinguishing classes of dynamical behavior for one- and two-dimensional torus maps, in particular, between orbits that are incommensurate, resonant, periodic, or chaotic. We first consider Arnold's circle map, for which there is a universal power law for the fraction of nonresonant orbits as a function of the amplitude of the nonlinearity. Our methods give a more precise calculation of the coefficients for this power law.
View Article and Find Full Text PDFJ Voice
January 2025
Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka 815-8540, Japan.
Introduction: Vocal distortion, also known as a scream or growl, is used worldwide as an essential technique in singing, especially in rock and metal, and as an ethnic voice in Mongolian singing. However, the production mechanism of vocal distortion is not yet clearly understood owing to limited research on the behavior of the larynx, which is the source of the distorted voice.
Objectives: This study used high-speed digital imaging (HSDI) to observe the larynx of professional singers with exceptional singing skills and determine the laryngeal dynamics in the voice production of various vocal distortions.
Sci Rep
December 2024
Department of Physics, Yunnan University, Kunming, 650500, China.
Vibrational resonance and chaos control in the canonical Chua's circuit with a smooth cubic nonlinear resistor is investigated by an analog circuit experiment and a dynamical model. By adjusting the amplitude and frequency of the high-frequency signal while keeping other parameters constant, the system exhibits a resonant peak in its response to the weak low-frequency signal. Notably, when the amplitude of the high-frequency signal exceeds the critical threshold, the system undergoes a transition from a single-scroll chaotic attractor to a double-scroll chaotic attractor, marking the emergence of vibrational resonance.
View Article and Find Full Text PDFPeerJ Comput Sci
November 2024
School of Computer Science and Engineering, VIT-AP University, Amaravati, Guntur, Andhra Pradesh, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!