A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cross-ECV consistency at global scale: LAI and FAPAR changes. | LitMetric

Cross-ECV consistency at global scale: LAI and FAPAR changes.

Remote Sens Environ

European Commission, Joint Research Centre, Via Enrico Fermi, 2749 21027 Ispra, VA, Italy.

Published: September 2021

A framework is proposed for assessing the physical consistency between two terrestrial Essential Climate Variables (ECVs) products retrieved from Earth Observation at global scale. The methodology assessed the level of agreement between the temporal variations of Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR). The simultaneous changes were classified according to their sign, magnitude and level of confidence, whereby the respective products uncertainties were taken into consideration. A set of proposed agreement metrics were used to identify temporal and spatial biases of non-coherency, non-significance, sensitivity and the overall level of agreement of the temporal changes between two ECVs. We applied the methodology using the Joint Research Center (JRC) Two-stream Inversion Package (TIP) products at 1 km, those provided by the Copernicus Global Land Service (CGLS) based on the SPOT/VGT and Proba-V at 1 km, and the MODIS MCD15A3 at 500 m. In addition, the same analysis was applied with aggregated products at a larger scale over Southern Africa. We found that the CGLS LAI and FAPAR products lacked consistency in their spatial and temporal changes and were severely affected by trends. The MCD15A3 products were characterized by the highest number of non-coherent changes between the two ECVs but temporal inconsistencies were mainly located over the eastern hemisphere. The JRC-TIP products were highly consistent. The results showed the advantages of physically-based retrieval algorithms, in both JRC-TIP and MODIS products, and indicated also that, except for MODIS over forests, aggregated products using an uncertainty-based weighted average led to higher agreement between the ECVs changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8299548PMC
http://dx.doi.org/10.1016/j.rse.2021.112561DOI Listing

Publication Analysis

Top Keywords

products
9
global scale
8
lai fapar
8
level agreement
8
agreement temporal
8
temporal changes
8
changes ecvs
8
aggregated products
8
changes
6
temporal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!