In line with the growing interest in humans' nutrition, production of microalgae-based functional foods characterized by an increased content of bioactive substances is attractive. The aim of this study was to investigate the potential of microalgae as additives to feed for laying hens, to enrich the eggs with polyunsaturated fatty acids (PUFA) and selenium/carotenoid antioxidants. Our results showed that supplementation of hens by feed containing 1% of or 1% of leads to increase of long-chain PUFA in eggs by 26-66%. Addition of 1% of to feed causes the increase of lutein and cantaxanthin in eggs by 48% and 18%, respectively, and addition of 0.5% selenium enriched increases the final content of organic selenium in eggs by 100-152%. As concerns selenium, it is important to notice that its bioavailability has to be considered. Despite the higher concentration of total selenium in than in its bioaccessibility in was limited, thus out of usage for feeding purposes. Administration of combinations of selenium enriched + and + verified the increased concentrations of organic selenium, PUFA, as well as carotenoids, with no adverse effect on quality and productivity of eggs. The study confirmed the potential of both traditional as well as new microalgae to be used as feed supplements for functional eggs production. The supplementation of hens by specific microalgae combinations could be advantageous in terms of spectrum of bioactive compounds present.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405822 | PMC |
http://dx.doi.org/10.1007/s13197-020-04896-3 | DOI Listing |
Environ Res
January 2025
Université de Caen Normandie, Alliance Sorbonne Université, MNHN, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Esplanade de la Paix, 14032 Caen, France; MERSEA UR 7482, Université de Caen Normandie, Esplanade de la Paix, 14032 Caen, France.
Three French harbours connected to different water masses of the English Channel were chosen to investigate the hydrological parameters, chemical contaminants, and biofouling characteristics for 15 months. The biofouling development on two kinds of coatings, an anticorrosion coating (Epoxy) and a foul-release coating (FRC), was studied to compare micro- and macro- biofouling in harbour environments. Biofouling was investigated by considering wet biofouling biomass and composition, microalgae concentration, and bacterial abundance.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
The present study evaluates for the first time the seasonal performance of an innovative green groundwater treatment. The pilot plant combines microalgae-bacteria treatment and a cork-wood biofilter to reduce nitrates, pesticides, antibiotics (ABs), and antibiotic resistance genes (ARGs) from groundwater. Groundwater had nitrate concentrations ranging from 220 to 410 mg/L, while ABs (sulfonamides and fluoroquinolones) and pesticides (triazines) were detected at concentrations ranging from a few ng/L to 150 ng/L.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Civil Engineering and Environmental Management, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, Scotland, UK.
The prevalence of antibiotics in wastewater poses risks to human and animal health, contributing to antimicrobial resistance. Although various antibiotic removal methods exist, microalgae-based technology presents a cost-effective and eco-friendly alternative; however, limited research on its long-term integration in semi-continuous wastewater treatment trials hinders our understanding of its potential effectiveness. This investigation explored the antibiotic removal capabilities of the microalga Auxenochlorella protothecoides in photobioreactors with synthetic wastewater under semi-continuous conditions over one month.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria.
Microalgae offer a promising alternative for heavy metal removal, and the search for highly efficient strains is ongoing. This study investigated the potential of two microalgae, sp. BGV (Chlorophyta) and Schwabe & Simonsen (Cyanoprokaryota), to bind zinc ions (Zn⁺) and protect higher plants.
View Article and Find Full Text PDFMolecules
January 2025
Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy.
Hearing loss is one of the most common sensory disorders in humans, and a large number of cases are due to ear cell damage caused by ototoxic drugs including anticancer agents, such as cisplatin. The recent literature reported that hearing loss is promoted by an excessive generation of reactive oxygen species (ROS) in cochlea cells, which causes oxidative stress. Recently, polysaccharides from the cyanobacterium showed many biological activities, including antioxidant activity, suggesting their potential use to combat hearing loss.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!