Phagocyte metabolism: neutrophils have their cake but don't eat it.

Trends Immunol

School of Biochemistry and Immunology, Trinity College, Dublin, Ireland. Electronic address:

Published: October 2021

Selectively targeting facets of neutrophil function could benefit infectious and inflammatory diseases. Amara et al. report on a compound which blocks human neutrophil activation by activating the glycolytic enzyme phosphofructokinase, liver-type (PFKL). Altering glucose fate by modulating this key enzymatic step could dramatically alter the function and fate of phagocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.it.2021.08.011DOI Listing

Publication Analysis

Top Keywords

phagocyte metabolism
4
metabolism neutrophils
4
neutrophils cake
4
cake eat
4
eat selectively
4
selectively targeting
4
targeting facets
4
facets neutrophil
4
neutrophil function
4
function benefit
4

Similar Publications

[Research progress on the role of efferocytosis in liver diseases].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Central Laboratory, Chengdu University of TCM, School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, China.

Efferocytosis refers to the process of phagocytes engulfing and clearing the cells after programmed cell death. In recent years, an increasing number of studies have shown that the mechanisms of efferocytosis are closely related to drug-induced liver injury, hepatic ischemia-reperfusion injury, viral hepatitis, cholestatic liver diseases, metabolic-associated fatty liver disease, alcoholic liver disease, and other liver disorders. This review summarized the research progress on the role of efferocytosis in liver diseases, with the hope of providing new targets for the prevention and treatment of liver diseases.

View Article and Find Full Text PDF

Phagocytosis by macrophages decreases the radiance of bioluminescent Staphylococcus aureus.

BMC Microbiol

January 2025

Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, The Netherlands.

Article Synopsis
  • The study investigates how the bioluminescence of Staphylococcus aureus changes when it is engulfed by macrophages, showing a reduction in light production compared to bacteria in culture.
  • The bacterial count remains stable during this process, but bioluminescence increases again when bacteria are released after macrophage cell death or when fresh macrophages are added.
  • These findings highlight the need to consider intracellular residency effects on bioluminescence when using imaging techniques to study infections in live animals.
View Article and Find Full Text PDF

Lung cancer, particularly adenocarcinoma, ranks high in morbidity and mortality rates worldwide, with a relatively low five-year survival rate. To achieve precise prognostic assessment and clinical intervention for patients, thereby enhancing their survival prospects, there is an urgent need for more accurate stratification schemes. Currently, the TNM staging system is predominantly used in clinical practice for prognostic evaluation, but its accuracy is constrained by the reliance on physician experience.

View Article and Find Full Text PDF

NIM-1324 is an oral investigational new drug for autoimmune disease that targets the Lanthionine Synthetase C-like 2 (LANCL2) pathway. Through activation of LANCL2, NIM-1324 modulates CD4+ T cells to bias signaling and cellular metabolism toward increased immunoregulatory function while providing similar support to phagocytes. In primary human immune cells, NIM-1324 reduces type I interferon and inflammatory cytokine (IL-6, IL-8) production.

View Article and Find Full Text PDF

Background: A neuroinflammatory disease such as Alzheimer's disease, presents a significant challenge in neurotherapeutics, particularly due to the complex etiology and allostatic factors, referred to as CNS stressors, that accelerate the development and progression of the disease. These CNS stressors include cerebral hypo-glucose metabolism, hyperinsulinemia, mitochondrial dysfunction, oxidative stress, impairment of neuronal autophagy, hypoxic insults and neuroinflammation. This study aims to explore the efficacy and safety of DAG-MAG-ΒHB, a novel ketone diester, in mitigating these risk factors by sustaining therapeutic ketosis, independent of conventional metabolic pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!