A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of vitamin C supplementation on placental DNA methylation changes related to maternal smoking: association with gene expression and respiratory outcomes. | LitMetric

Background: Maternal smoking during pregnancy (MSDP) affects development of multiple organ systems including the placenta, lung, brain, and vasculature. In particular, children exposed to MSDP show lifelong deficits in pulmonary function and increased risk of asthma and wheeze. Our laboratory has previously shown that vitamin C supplementation during pregnancy prevents some of the adverse effects of MSDP on offspring respiratory outcomes. Epigenetic modifications, including DNA methylation (DNAm), are a likely link between in utero exposures and adverse health outcomes, and MSDP has previously been associated with DNAm changes in blood, placenta, and buccal epithelium. Analysis of placental DNAm may reveal critical targets of MSDP and vitamin C relevant to respiratory health outcomes.

Results: DNAm was measured in placentas obtained from 72 smokers enrolled in the VCSIP RCT: NCT03203603 (37 supplemented with vitamin C, 35 with placebo) and 24 never-smokers for reference. Methylation at one CpG, cg20790161, reached Bonferroni significance and was hypomethylated in vitamin C supplemented smokers versus placebo. Analysis of spatially related CpGs identified 93 candidate differentially methylated regions (DMRs) between treatment groups, including loci known to be associated with lung function, oxidative stress, fetal development and growth, and angiogenesis. Overlap of nominally significant differentially methylated CpGs (DMCs) in never-smokers versus placebo with nominally significant DMCs in vitamin C versus placebo identified 9059 candidate "restored CpGs" for association with placental transcript expression and respiratory outcomes. Methylation at 274 restored candidate CpG sites was associated with expression of 259 genes (FDR < 0.05). We further identified candidate CpGs associated with infant lung function (34 CpGs) and composite wheeze (1 CpG) at 12 months of age (FDR < 0.05). Increased methylation in the DIP2C, APOH/PRKCA, and additional candidate gene regions was associated with improved lung function and decreased wheeze in offspring of vitamin C-treated smokers.

Conclusions: Vitamin C supplementation to pregnant smokers ameliorates changes associated with maternal smoking in placental DNA methylation and gene expression in pathways potentially linked to improved placental function and offspring respiratory health. Further work is necessary to validate candidate loci and elucidate the causal pathway between placental methylation changes and outcomes of offspring exposed to MSDP. Clinical trial registration ClinicalTrials.gov, NCT01723696. Registered November 6, 2012. https://clinicaltrials.gov/ct2/show/record/NCT01723696 .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8451157PMC
http://dx.doi.org/10.1186/s13148-021-01161-yDOI Listing

Publication Analysis

Top Keywords

respiratory outcomes
12
versus placebo
12
vitamin supplementation
8
dna methylation
8
maternal smoking
8
expression respiratory
8
differentially methylated
8
msdp
5
vitamin
5
impact vitamin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!