Astaxanthin Ameliorates Blood Pressure in Salt-Induced Prehypertensive Rats Through ROS/MAPK/NF-κB Pathways in the Hypothalamic Paraventricular Nucleus.

Cardiovasc Toxicol

Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China.

Published: December 2021

Astaxanthin (AST) has a variety of biochemical effects, including anti-inflammatory, antioxidative, and antihypertensive functions. The aim of the present study was to determine whether AST ameliorates blood pressure in salt-induced prehypertensive rats by ROS/MAPK/NF-κB pathways in hypothalamic paraventricular nucleus.To explore the central effects of AST on the development of blood pressure, prehypertensive rats were induced by a high-salt diet (HS, 8% NaCl) and its control groups were treated with normal-salt diet (NS, 0.3% NaCl). The Dahl salt-sensitive (S) rats with HS diet for 6 weeks received AST or vehicle by gastric perfusion for 6 weeks. Compared to those with NS diet, rats with HS diet exhibited increased mean arterial pressure (MAP) and heart rate (HR). These increases were associated with higher plasma level of norepinephrine (NE), interleukin 1β (IL-1β), and interleukin 6 (IL-6); elevated PVN level of reactive oxygen species (ROS), NOX2, and NOX4, that of IL-1β, IL-6, monocyte chemotactic protein 1 (MCP-1), tyrosine hydroxylase (TH), phosphorylation extracellular-signal-regulated kinase (p-ERK1/2), phosphorylation Jun N-terminal kinases (p-JNK), nuclear factor-kappa B (NF-κB) activity; and lower levels of IL-10, superoxide dismutase (SOD), and catalase (CAT) in the PVN. In addition, our data demonstrated that chronic AST treatment ameliorated these changes in the HS but not NS diet rats. These data suggested that AST could alleviate prehypertensive response in HS-induced prehypertension through ROS/MAPK/NF-κB pathways in the PVN.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12012-021-09695-6DOI Listing

Publication Analysis

Top Keywords

blood pressure
12
prehypertensive rats
12
ros/mapk/nf-κb pathways
12
ameliorates blood
8
pressure salt-induced
8
salt-induced prehypertensive
8
rats ros/mapk/nf-κb
8
pathways hypothalamic
8
hypothalamic paraventricular
8
rats diet
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!