Light and noise pollution from human activity are increasing at a dramatic rate. These sensory stimuli can have a wide range of effects on animal behavior, reproductive success, and physiology. However, less is known about the functional and community-level consequences of these sensory pollutants, especially when they co-occur. Using camera traps in a manipulative field experiment, we studied the effects of anthropogenic light and noise, singularly and in tandem, on richness and community turnover at both the taxa and functional group level as well as foraging activity. We showed that both light and noise pollution did alter taxonomic richness and that these effects can differ depending on the scale of observation. Increases in light levels had a negative effect on richness at the camera-level scale, but light-treated sites had the highest pooled (i.e., cumulative) richness of all treatment types. In contrast, noise was found to have a negative effect on cumulative richness; however, when both stimuli were present, the addition of night-lighting mitigated the effects of noise. Artificial light and moonlight had the strongest influence on community turnover, and results remained consistent at both the taxa and functional group level. Additionally, increases in ambient noise and moonlight, but not artificial light, reduced foraging activity. Our study provides evidence that alterations to the sensory environment can alter the richness and composition of communities and that effects can be scale-dependent and also alter foraging behavior. Unexpectedly, the addition of artificial light may have mitigated the negative effects of noise on cumulative taxonomic richness. This highlights the importance of researching the consequences of co-exposure to these globally common pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.150223 | DOI Listing |
IEEE Trans Instrum Meas
May 2024
School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China.
Automatic retinal layer segmentation with medical images, such as optical coherence tomography (OCT) images, serves as an important tool for diagnosing ophthalmic diseases. However, it is challenging to achieve accurate segmentation due to low contrast and blood flow noises presented in the images. In addition, the algorithm should be light-weight to be deployed for practical clinical applications.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Previous studies mostly use single-type features to establish a prediction model. We aim to develop a comprehensive prediction model that effectively identify patients with poor prognosis for single hepatocellular carcinoma (HCC) based on artificial intelligence (AI). : 236 single HCC patients were studied to establish a comprehensive prediction model.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, Indonesia.
Strawberries, known for their antioxidant properties, exhibit changes in physiology and metabolite profiles based on cultivation techniques. In Indonesia, strawberries are typically grown in highland regions, but climate change has necessitated adjustments in cultivation practices to enhance production and quality. This study investigates the adaptation of strawberry plants in lowland environments using light-emitting diodes (LEDs) and the exogenous application of methyl jasmonate (MeJA) and methyl salicylic acid (MeSA).
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemistry, Bilkent University, 06800, Ankara, Turkey.
Patterns are encountered and employed in nature, such as in the communication or growth of organisms and sophisticated behaviors such as camouflage. Artificial patterns are not rare, either. They can also be used in sensing, recording information, and manipulating material properties.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Nankai University Eye Institute, Nankai University, Tianjin, 300071, China.
Reproducing the microstructure of the natural cornea remains a significant challenge in achieving the mechanical and biological functionality of artificial corneas. Therefore, the development of cascade structures that mimic the natural extracellular matrix (ECM), achieving both macro-stability and micro-structure, is of critical importance. This study proposes a novel, efficient, and general photo-functionalization strategy for modifying natural biomaterials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!