Advanced wastewater treatment (AWT) technologies are now considered to target urban micropollutants (MPs) before discharge into receiving water bodies and to comply with specific criteria for reuse. Extra energy and/or resources are necessary to achieve the elimination of MPs. Using the Life Cycle Assessment framework, this study assesses net environmental efficiencies for two AWTs (i) ozone systems (air-fed and pure oxygen-fed) and (ii) granular activated carbon filter. Sixty-five MPs with proven removal efficiency values and toxicity and/or ecotoxicity potentials were included in this study building on results from recent research. Consolidated Life Cycle Inventories with data quality and uncertainty characterization were produced with an emphasis on operational inputs. Results show that the direct water quality benefits obtained from AWT are outweighed by greater increases in indirect impacts from energy and resource demands. Future research should include water quality aspects not currently captured in life cycle impact assessment, such as endocrine disruption and whole-effluent toxicity, in order to assess the complete policy implications of MP removal strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.150300 | DOI Listing |
Sci Adv
January 2025
Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA.
Unlike most species that use telomerase for telomere maintenance, many dipterans, including , rely on three telomere-specific retrotransposons (TRs)-, , and -to form tandem repeats at chromosome ends. Although TR transcription is crucial in their life cycle, its regulation remains poorly understood. This study identifies the Mediator complex, E2F1-Dp, and Scalloped/dTEAD as key regulators of TR transcription.
View Article and Find Full Text PDFCell Rep
January 2025
Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China. Electronic address:
Humans are widely exposed to phthalates, a common chemical plasticizer. Previous cohort studies have revealed that maternal exposure to monobutyl phthalate (MBP), a key metabolite of phthalates, is associated with neurodevelopmental defects. However, the molecular mechanism remains unclear.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India.
This work aims to deal with the challenges associated with designing complementary bifunctional electrocatalysts and a separator/membrane that enables rechargeable zinc-air batteries (RZABs) with nearly solid-state operability. This solid-state RZAB was accomplished by integrating a bifunctional electrocatalyst based on Ru-RuO interface nanoparticles supported on nitrogen-doped (N-doped) graphene (Ru-RuO/NGr) and a dual-doped poly(acrylic acid) hydrogel (d-PAA) electrolyte soaked in KOH with sodium stannate additive. The catalyst shows enhanced activity and stability toward the two oxygen reactions, i.
View Article and Find Full Text PDFVet Res Commun
January 2025
Departamento de Salud Animal y Medicina Preventiva, Cuerpo Académico de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Yucatán, México.
Otobius megnini (spinose ear tick) is a cosmopolitan soft tick that parasitizes domestic and wild mammals, as well as humans. The larval and nymphal stages are common parasites that feed on blood inside the canal ears of hosts, while adults are nonfeeding and live off the host. Different nymphal stages of O.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Currently, it is a significant challenge to achieve long-term cyclability and fast chargeability in lithium-ion batteries, especially for the Ni-based oxide cathode, due to severe chemo-mechanical degradation. Despite its importance, the fast charging long-term cycling behaviour is not well understood. Therefore, we comprehensively evaluate the feasibility of fast charging applications for Co-free layered oxide cathodes, with a focus on the extractable capacity and cyclability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!