Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, chitosan (CH), mulberry anthocyanin (MA), and lemongrass essential oils (LEO) were used as an interlayer using a 3D printer. Further, cassava starch (CS) was used as a protective layer to form indicator films. The indicator films containing LEO showed significant antioxidant and antibacterial properties, and the release rate of LEO increased with a rise in pH. When chilled pork spoiled, the color of the indicator films changed from red to gray-blue, and the RGB values could be automatically analyzed by a smartphone application to determine pork freshness. These films hold implications as easy-to-use indicators of meat freshness, with great potential for monitoring food spoilage, as part of an intelligent packaging system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2021.131082 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!