The SNX-482 peptide from Hysterocrates gigas spider acts as an immunomodulatory molecule activating macrophages.

Peptides

Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil; Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Brazil. Electronic address:

Published: December 2021

Peptides are molecules that have emerged as crucial candidates for the development of anticancer drugs. Spider venoms are a rich source of peptides (venom peptides - VPs) with biological effects. VPs have been tested as adjuvants in the activation of cells of the immune system with the aim of improving immunotherapies for the treatment of neoplasms. In the present study, the effects of SNX-482, a peptide from the African tarantula Hysterocrates gigas, on macrophages were described. The results showed that the peptide activated M0-macrophages, increasing costimulatory molecules (CD40, CD68, CD80, CD83, CD86) involved in antigen presentation, and also augmenting the checkpoint molecules PD-L1, CTLA-4 and FAS-L; these effects were not concentration-dependent. SNX-482 also increased the release of IL-23 and upregulated the expression of ccr4, ifn-g, gzmb and pdcd1, genes important for the anticancer response. The pretreatment of macrophages with the peptide did not interfere in the modulation of T cells, and macrophages previously polarized to M1 and M2 profile did not respond to SNX-482. These findings represent the expansion of knowledge about the use of VPs in drug discovery, pointing to a potential new candidate for anticancer immunotherapy. Considering that most immunotherapies target the adaptive system, the modulation of macrophages (an innate immune cell) by SNX-482 is especially relevant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2021.170648DOI Listing

Publication Analysis

Top Keywords

snx-482 peptide
8
hysterocrates gigas
8
snx-482
5
macrophages
5
peptide hysterocrates
4
gigas spider
4
spider acts
4
acts immunomodulatory
4
immunomodulatory molecule
4
molecule activating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!