A comprehensive mapping of the structural and functional circuitry of the brain is a major unresolved problem in contemporary neuroimaging research. Diffusion-weighted and functional MRI have provided investigators with the capability to assess structural and functional connectivity in-vivo, driven primarily by methods of white matter tractography and resting-state fMRI, respectively. These techniques have paved the way for the construction of the functional and structural connectomes, which are quantitative representations of brain architecture as neural networks, comprised of nodes and edges. The connectomes, typically depicted as matrices or graphs, possess topological properties that inherently characterize the strength, efficiency, and organization of the connections between distinct brain regions. Graph theory, a general mathematical framework for analyzing networks, can be implemented to derive metrics from the connectomes that are sensitive to changes in brain connectivity associated with age, sex, cognitive function, and disease. These quantities can be assessed at either the global (whole brain) or local levels, allowing for the identification of distinct regional connectivity hubs and associated localized brain networks, which together serve crucial roles in establishing the structural and functional architecture of the brain. As a result, structural and functional connectomes have each been employed to study the brain circuitry underlying early brain development, neuroplasticity, developmental disorders, psychopathology, epilepsy, aging, neurodegenerative disorders, and traumatic brain injury. While these studies have yielded important insights into brain structure, function, and pathology, a precise description of the innate relationship between functional and structural networks across the brain remains unachieved. To date, connectome research has merely scratched the surface of potential clinical applications and related characterizations of brain-wide connectivity. Continued advances in diffusion and functional MRI acquisition, the delineation of functional and structural networks, and the quantification of neural network properties in specific brain regions, will be invaluable to future progress in neuroimaging science.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.sult.2021.07.007 | DOI Listing |
ChemSusChem
December 2024
TCG-CREST, Research Institute for Sustainable Energy (RISE), INDIA.
Hydrogen evolution reaction (HER) is a key reaction in electrochemical water splitting for hydrogen production leading to the development of potentially sustainable energy technology. Importantly, the catalysts required for HER must be earth-abundant for their large-scale deployment; silicates representing one such class. Herein, we have synthesized a series of transition mono- and bi- metal metasilicates (with SO32- group) using facile wet-chemical method followed by calcination at a higher temperature.
View Article and Find Full Text PDFChemistry
December 2024
Lanzhou University, College of Chemistry and Chemical Engineering, Lanzhou Tianshui south street 222, 730000, Lanzhou, CHINA.
Dual single-atom catalysts have attracted considerable research interest due to their higher metal atom loading and more flexible active sites compared to single-atom catalysts (SACs). We pioneered the one-step synthesis of sheets copper-cobalt graphitic carbon nitride dual single-atom (S-Cu/Co-g-C3N4) using folding fan-shaped aluminum foil as a template, and used them as catalysts in the epoxidation of styrene respectively. Through XAFS(X-ray Absorption Fine Structure) and other characterizations, it is found that Cu and Co single atoms are stabilized separately on g-C3N4 via coordination with nitrogen (N), hindered the ordered growth of sheets, and formed more pore structures, which not only increased more catalytically active sites, but also effectively prevented the flakes re-aggregate during the catalytic process.
View Article and Find Full Text PDFChemphyschem
December 2024
University of Ioannina, Chemistry, 45110, Ioannina, GREECE.
The solvation structure and dynamics of the thiocyanate anion at infinite dilution in mixed N, N-Dimethylformamide (DMF)-water liquid solvents was studied using classical molecular dynamics simulation techniques. The results obtained have indicated a preferential solvation of the thiocyanate anions by the water molecules, due to strong hydrogen bonding interactions between the anion and water molecules. A first hydration shell at short intermolecular distances is formed around the SCN- anion consisting mainly by water molecules, followed by a second shell consisting by both DMF and water molecules.
View Article and Find Full Text PDFChemistry
December 2024
Universitat Duisburg-Essen, Institute of organic chemistry, Universitätsstraße 7, 45117, Essen, GERMANY.
In recent years, researchers studying fluorogenic samples have steadily shifted from using large, expensive, poorly soluble fluorophores with complex synthetic sequences to smaller, simpler p scaffolds with low molecular weight. This research article presents an in-depth study of the photophysical properties of five bridged single-benzene-based fluorophores (SBBFs) investigated for their solution and solid-state emission (SSSE) properties. The compounds O4, N1O3, N2O2, N3O1, and N4 are derived from a central terephthalonitrile core and vary in the amount of oxygen and nitrogen bridging atoms.
View Article and Find Full Text PDFChembiochem
December 2024
University of Pittsburgh, Department of Chemistry, 219 Parkman Ave., 15260, Pittsburgh, UNITED STATES OF AMERICA.
The threat posed by bacteria resistant to common antibiotics creates an urgent need for novel antimicrobials. Non-ribosomal peptide natural products that bind Lipid II, such as vancomycin, represent a promising source for such agents. The fungal defensin plectasin is one of a family of ribosomally produced miniproteins that exert antimicrobial activity via Lipid II binding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!