Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The drier climates predicted for many regions will result in reduced evaporative cooling, leading to leaf heat stress and enhanced mortality. The extent to which nonevaporative cooling can contribute to plant resilience under these increasingly stressful conditions is not well known at present. Using a novel, high accuracy infrared system for the continuous measurement of leaf temperature in mature trees under field conditions, we assessed leaf-to-air temperature differences (ΔT ) of pine needles during drought. On mid-summer days, ΔT remained < 3°C, both in trees exposed to summer drought and in those provided with supplemental irrigation, which had a more than 10-fold higher transpiration rate. The nonevaporative cooling in the drought-exposed trees must be facilitated by low resistance to heat transfer, generating a large sensible heat flux, H. ΔT was weakly related to variations in the radiation load and mean wind speed in the lower part of the canopy, but was dependent on canopy structure and within-canopy turbulence that enhanced the H. Nonevaporative cooling is demonstrated as an effective cooling mechanism in needle-leaf trees which can be a critical factor in forest resistance to drying climates. The generation of a large H at the leaf scale provides a basis for the development of the previously identified canopy-scale 'convector effect'.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.17742 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!