Constructed wetlands are an ecological engineering technology that has been widely applied to treat anthropogenic wastewater. Until now, few studies have focused on soil carbon (C) in the constructed treatment wetlands in tropical regions. Therefore, this study provides insight into the changes in soil C composition of tropically constructed wetlands at different ages. Five constructed wetlands were investigated in northern Kaohsiung, Taiwan. Soil C was analyzed at three different depths using an acid-hydrolysable method. The results showed that soil TOC content was highest on the soil surface (0-2 cm) and decreased at greater soil depths (2-5 and 5-10 cm) in all the studied constructed wetlands. There was more soil acid-hydrolysable C in the older constructed wetlands than in the younger ones at all depths. On the contrary, the soil recalcitrant carbon (RP-C) did not vary much across the wetland soils. In addition, the RP-C to TOC ratios were higher in the younger than older constructed wetlands, implying that the soil bioavailable C sources for microbial growth increased with the wetland's age. As a result, the compositions of organotrophic microbes, such as methanogens (mcrA copies), appeared to increase with wetlands' ages (i.e., negatively correlated with RP-C/TOC), while the total microbial abundance (16S rDNA) and abundance of lithotrophic microbes, such as methanotrophs (pmoA copies), were not correlated with RP-C/TOC or AHPI-C/TOC ratios, based on the results of our canonical correspondence analysis. Furthermore, the constructed wetlands accumulated soil RP-C from 2.33 to 0.08 g C m day in the constructed wetlands 1 to 30 years old, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.150290 | DOI Listing |
Environ Monit Assess
January 2025
Tianjin Research Institute for Water Transport Engineering, Ministry of Transport (TIWTE), Tianjin, 300456, China.
Scientific evaluation of the effectiveness of ecological restoration could provide support for sustainable management and protection of wetlands. However, due to the multiple and difficult to quantify factors affecting wetlands, commonly used spatiotemporal evaluation methods were difficult to scientifically reflect the actual effectiveness of ecological restoration. This paper took Tianjin Qilihai Wetland, a representative wetland in northern China, as the research object.
View Article and Find Full Text PDFMar Environ Res
December 2024
School of Life Sciences, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education and Shanghai Science and Technology Committee, Shanghai, China. Electronic address:
Seawall construction has complex ecological impacts. However, the ecological mechanisms within plankton communities under tidal restriction resulting from seawall construction remain unexplored. Using environmental DNA (eDNA) metabarcoding, this study examined the impact of seawall construction on the assembly process of planktonic eukaryote and bacteria communities from the unrestricted area and the tide-restricted area in the Chongming Dongtan Nature Reserve of Yangtze River Estuary.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Earth System Science, Tianjin University, Tianjin 300072, China.
The hydrodynamics, water temperature, and water quality model for the Dan River and Renzhuang Reservoir continuum were developed using field monitoring data and the Environmental Fluid Dynamics Code (EFDC). An in-situ water discharge experiment enabled the calculation of water propagation time using a simulated flood progression method and the hydrodynamics module of EFDC. Based on these model results, degradation coefficients for chemical oxygen demand, biochemical oxygen demand, nitrogen (N), phosphorus (P), fluoride, arsenic were determined, revealing significantly higher values when the wetland barrage was opening.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
J Nat Resour Agric Ecosyst
January 2024
Office of Research and Development, USA Environmental Protection Agency, Research Triangle Park, North Carolina, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!