Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The current work aims to study the nephroprotective potential of naringin (NG), a flavanone derived from citrus fruits, in methotrexate (MTX)-induced renal toxicity. Thirty male rats were divided into five groups; control group (IP saline), MTX group (IP single dose, 20 mg/kg), and three groups co-treated with MTX and naringin (IP daily dose; 20, 40, and 80 mg/kg, respectively). Kidney tissues were used to investigate renal function, oxidative stress, lipid peroxidation, and caspase-3 activity. Biochemical cytokine analysis was performed in addition to ultrastructural examinations of kidney tissue. When compared to the MTX-treated rats, MTX+NG significantly reduced the levels of urea, creatinine, MDA, NO, TNFα, IL-6, and caspase-3 activity. A significant increase in the levels of the antioxidant enzymes and GSH were also noted. Additionally, naringin ameliorated the apparent ultrastructural changes observed in the glomeruli and renal tubules of MTX-intoxicated rats. Noticeable structural improvements of glomerular lesions, proximal, and distal convoluted tubular epithelium were observed in MTX+NG treated animals, including podocytes with regular foot processes, perfectly organized filtration barrier, no signs of GBM thickening, organized brush border, and normal architecture of microvilli. Naringin (80 mg/kg) had the maximum amelioration effect. To the best of our knowledge, this is the first study to investigate the ultrastructural manifestations of naringin and/or MTX on the kidney of rats. Taken all, naringin has a potent therapeutic effect and can be used in adjuvant therapy to prevent MTX-induced nephrotoxicity. Nevertheless, the molecular mechanism underlying the nephroprotective capacity of naringin needs further investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2021.112180 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!