A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modulating the biofunctionality of enzyme-MOF nanobiocatalyst through structure-switching aptamer for continuous degradation of BPA. | LitMetric

Modulating the biofunctionality of enzyme-MOF nanobiocatalyst through structure-switching aptamer for continuous degradation of BPA.

Colloids Surf B Biointerfaces

School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China. Electronic address:

Published: December 2021

Encapsulating enzyme within MOF (enzyme-MOF) gives rise to new opportunity to improve the fragility of enzyme, but practical application of enzyme-MOF composite is far from being realized. The development of a novel enzyme-MOF composite system should simultaneously guarantee the enhanced activity and controllably complete recycling, and only in this way can we efficiently and economically utilize the enzyme-MOF composite. Herein, we addressed all these fundamental limitations of current enzyme-MOF composite by establishing aptamer-functionalized enzyme-MOF composite (HRP-ZIF-8@P1). HRP-ZIF-8@P1 relied on automatic structure switch of aptamer-target binding and aptamer-cDNA (complementary DNA) hybridization, achieving effectiveness in self-enriching substrate around HRP-ZIF-8@P1 to boost enzymatic activity first, subsequently hybridizing spontaneously with magnetically controllable cDNA sequence (FeO@P3) to completely recover the HRP-ZIF-8@P1, where preferentially capturing substrate could further induce the release of the hybridized HRP-ZIF-8@P1 for automatically starting the cyclic enzyme catalysis. A 5.6-fold enhancement in the catalytic efficiency for BPA degradation was endowed, and 94.7% catalytic activity was retained for 8 consecutive degradations of BPA, both of which were even more significant than HRP-ZIF-8. Additionally, remarkable stability of HRP-ZIF-8@P1 was afforded by dual-layer protection of ZIF-8 and P1 in denaturing conditions. Taking the possibility of discovering an aptamer for any target into account, the aptamer-functionalized enzyme-MOF composites provide a generic and simple guide for simultaneously boosting enzymatic activity and controllably full recycling the enzyme-MOF systems, accelerating their commercial utilizations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2021.112099DOI Listing

Publication Analysis

Top Keywords

enzyme-mof composite
20
enzyme-mof
9
activity controllably
8
aptamer-functionalized enzyme-mof
8
enzymatic activity
8
hrp-zif-8@p1
6
composite
5
modulating biofunctionality
4
biofunctionality enzyme-mof
4
enzyme-mof nanobiocatalyst
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!