Today, removing pollutants from water sources is essential because of the population increase and the growing need for safe drinking water. Dyes are one of the most critical pollutants from industrial effluents such as paper and textile industries that profoundly affect the environment. There are several ways to remove environmental contaminants. Magnetic nanoparticles have a high ability to adsorb dyes. Of course, increasing the interaction between magnetic nanomaterials and pollutants is also essential, which can be done using porous materials such as dendrimers. In this work, the synthesis of CuFeO magnetite nanoparticles within the polyamidoamine dendrimers structure was used as an efficient sorbent to remove both alizarin reds (ARS) and brilliant green (BG) dyes. Moreover, various parameters for dyes removal were studied. The optimum removal conditions were obtained for ARS within 30 min at a sorbent dose of 2 mg per 5 mL for the initial dye concentration of 7.0 ppm in pH 6 at 25 °C, and for BG within 45 min at a sorbent dose of 5 mg per 5 mL for the initial dye concentration of 17.0 ppm in pH 8 at 25 °C. At the optimum values of the above parameters, both dyes' removal efficiency was more than 97%. Also, the obtained results showed that the adsorption isotherm follows the Langmuir model and Temkin model for ARS and BG, respectively. This method was successfully used for the removal of both dyes in water samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2021.112048DOI Listing

Publication Analysis

Top Keywords

sorbent dose
8
5 ml initial
8
initial dye
8
dye concentration
8
dyes
6
removal
5
fabrication cufe2o4/pamam
4
cufe2o4/pamam nanocomposites
4
nanocomposites efficient
4
efficient removal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!