Loss of chlorophyll and oxidative damage co-occur during heat-induced leaf senescence. This study aimed to determine the functions of a chlorophyll catabolic gene, NON-YELLOW COLOURING 1 (NYC1)-like (NOL), in regulating heat-induced leaf senescence and to characterize antioxidant roles of a chlorophyll derivative, sodium copper chlorophyllin (SCC), in suppressing heat-induced leaf senescence. In two separate experiments, one by comparing NOL RNAi transgenic and wild-type plants, and the other by analysing the effects of SCC treatment, perennial ryegrass (Lolium perenne) was exposed to heat stress (38/35 °C, day/night) or optimal temperature (25/20 °C). Results showed that both knock down of LpNOL and application of SCC suppressed heat-induced leaf senescence, as manifested by increased chlorophyll content, reduced electrolyte leakage, down-regulation of chlorophyll-catabolic genes and senescence-related genes, as well as enhanced antioxidant capacity in the peroxidase pathway for H2O2 scavenging. Ex vivo SCC incubation protected membranes from H2O2 damage in mesophyll protoplasts of perennial ryegrass. The suppression of leaf senescence by knocking down NOL or chlorophyllin application was associated with enhanced chlorophyll accumulation playing antioxidant roles in protecting leaves from heat-induced oxidative damage.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erab426DOI Listing

Publication Analysis

Top Keywords

leaf senescence
24
heat-induced leaf
20
antioxidant roles
12
perennial ryegrass
12
non-yellow colouring
8
chlorophyllin application
8
enhanced chlorophyll
8
chlorophyll accumulation
8
suppressing heat-induced
8
oxidative damage
8

Similar Publications

Peptide hormones in plants.

Mol Hortic

January 2025

Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses.

View Article and Find Full Text PDF

Background: Regeneration is the preferred approach to restore the structure and function after tissue damage. Rapid proliferation of cells over the site of damage is integral to the process of regeneration. However, even subtle mutations in proliferating cells may cause detrimental effects by eliciting abnormal differentiation.

View Article and Find Full Text PDF

Genome-wide analysis of TCP family genes and their constitutive expression pattern analysis in the melon (Cucumis melo).

Genes Genomics

January 2025

Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.

Background: TCP proteins are plant-specific transcription factors that play essential roles in various developmental processes, including leaf morphogenesis and senescence, flowering, lateral branching, hormone crosstalk, and stress responses. However, a comprehensive analysis of genome-wide TCP genes and their expression patterns in melon is yet to be done.

Objective: The present study aims to identify and analyze the TCP genes in the melon genome and understand their putative functions.

View Article and Find Full Text PDF

Wheat streak mosaic virus (WSMV; ) and Triticum mosaic virus (TriMV; ), the type members of the genera and , respectively, in the family , are economically important wheat viruses in the Great Plains region of the USA. Co-infection of wheat by WSMV and TriMV results in disease synergism. Wheat transcriptome from singly (WSMV or TriMV) and doubly (WSMV+TriMV) infected upper uninoculated leaves were analyzed by RNA-Seq at 9, 12, and 21 days postinoculation.

View Article and Find Full Text PDF

Common reed () is a cosmopolitan species, though its dieback is a worldwide phenomenon. In order to assess the evolutionary role of phenotypic plasticity in a successful plant, the values and plasticity of photophysiological traits of were investigated in the Lake Fertő wetlands at 5 sites with different degrees of reed degradation and along a seasonal sequence. On the one hand, along the established ecological degradation gradient, photophysiological traits of changed significantly, affecting plant productivity, although no consistent gradient-type trends were observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!