Sulfide-containing mine waste was oxidized to produce acid mine drainage, which lead to acidification of surrounding soil and downstream rivers and posed a threat to the surrounding environment. Quartz often coexists with sulfide minerals and affects the oxidation of sulfide minerals. In order to explore the role of quartz in the bio-oxidation of sulfide minerals in mine solid waste, the mixed minerals of quartz and sulfide minerals were bio-oxidized by Acidithiobacillus ferrooxidans. The results showed that quartz could improve the microbial activity and increase the acid production of sulfide minerals. The larger the proportion of quartz in bio-oxidation of sulfide minerals, the less the production of secondary minerals such as jarosite, and the larger the leaching amount of iron and sulfate. This research provides new ideas for speeding up the bio-oxidation of sulfide mineral to remove iron and sulfate. It provides a new way to solve acid pollution caused by oxidation of sulfide minerals.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00128-021-03313-5DOI Listing

Publication Analysis

Top Keywords

sulfide minerals
32
bio-oxidation sulfide
16
quartz bio-oxidation
12
minerals
10
sulfide
9
role quartz
8
minerals mine
8
mine solid
8
solid waste
8
oxidation sulfide
8

Similar Publications

The efficient degradation of SAs is a significant challenge for the treatment of wastewater. To address this, the FeS@BC was prepared by calcining a mixture of pyrite and biomass, and used to activate peroxydisulfate (PDS) to degrade sulfadiazine (SDZ). The effect of carbon sources (wheat straw, rice husk, and corn cob) on catalytic activity of FeS@BC were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), total Fe dissolution and free radical quantification.

View Article and Find Full Text PDF

Redox transformation and partitioning of arsenic during the hydrothermal aging of FeS-As coprecipitates under anoxic condition.

J Environ Sci (China)

July 2025

Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China. Electronic address:

In sulfidic anoxic environments, iron sulfides are widespread solid phases that play an important role in the arsenic (As) biogeochemical cycle. This work investigated the transformation process of FeS-As coprecipitates, the concurrent behavior, and the speciation of associated As under anoxic conditions. The results showed that FeS-As coprecipitates could convert to greigite and pyrite.

View Article and Find Full Text PDF

Contaminants in the water environment of different pyrite mines have varying characteristics due to different geological origins. Sulfur isotope (δS) is an effective tool to reveal the mechanism of water environment contamination, but no investigations have yet analyzed the characteristics and environmental significance of the δS in the water environment of different pyrite mines. This study involved a field investigation of four typical pyrite mines in China (representing volcanic, skarn, sedimentary-metamorphic, and coal-deposited types) and the analysis of the hydrochemistry of aqueous samples and the δS of both pyrite and dissolved sulfates.

View Article and Find Full Text PDF

Gold (or electrum) in hydrothermal fluid precipitates directly from gold sulfide complex and/or partly via suspended nanoparticles. The hydrothermal fluid contains "invisible gold" that is atomically dispersed in sulfide minerals or as nanoparticles with a size of less than 10 nm. However, the contribution of these gold nanoparticles to the formation of native gold and its alloy with silver (electrum) remains unclear.

View Article and Find Full Text PDF

Dissolved beryllium (< 1 kDa) mobilized as a major element in groundwater in legacy mine waste.

Environ Pollut

January 2025

Applied Geochemistry, Department of Civil, Environmental and Natural Resource Engineering, Luleå University of Technology, Luleå, Sweden.

Article Synopsis
  • Research on beryllium (Be) geochemistry in terrestrial environments is complicated due to its toxicity and low environmental concentrations, but high levels were found in groundwater at a Tailings Storage Facility in Sweden.
  • A study from 2016-2024 analyzed groundwater samples and identified that over 90% of dissolved Be was truly dissolved in suboxic conditions, with significant concentrations correlated with sulfate complexes at pH levels of 6.0 to 6.4.
  • The research indicated that as pH decreases, Be concentrations are likely to rise due to long-term sulfide oxidation, while secondary minerals on the tailings shore may act as temporary barriers that can limit Be mobility.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!