The passive elastic modulus of muscle fiber appears to be size-dependent. The objectives of this study were to determine whether this size effect was evident in the mechanical testing of muscle fiber bundles and to examine whether the muscle fiber bundle cross-section is circular. Muscle fibers and fiber bundles were extracted from lumbar spine multifidus and longissimus of three cohorts: group one (G1) and two (G2) included 13 (330 ± 14 g) and 6 (452 ± 28 g) rats, while Group 3 (G3) comprised 9 degenerative spine patients. A minimum of six muscle fibers and six muscle fiber bundles from each muscle underwent cumulative stretches, each of 10% strain followed by 4 minutes relaxation. For all specimens, top and side diameters were measured. Elastic modulus was calculated as tangent at 30% strain from the stress-strain curve. Linear correlations between the sample cross sectional area (CSA) and elastic moduli in each group were performed. The correlations showed that increasing specimen CSA resulted in lower elastic modulus for both rats and humans, muscle fibers and fiber bundles. The median ratio of major to minor axis exceeded 1.0 for all groups, ranging between 1.15-1.29 for fibers and 1.27-1.44 for bundles. The lower elastic moduli with increasing size can be explained by relatively less collagenous extracellular matrix in the large fiber bundles. Future studies of passive property measurement should aim for consistent bundle sizes and measuring diameters of two orthogonal axes of the muscle specimens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8448745 | PMC |
http://dx.doi.org/10.1038/s41598-021-97895-z | DOI Listing |
Sensors (Basel)
December 2024
Department of Operational Oceanography, Maritime Institute, Gdynia Maritime University, ul. Roberta de Plelo 20, 80-848 Gdańsk, Poland.
The aim of this study is to verify the possibility of detecting oil in the bottom sediment using a fibre optic system. The presence of oil is assessed on excitation-emission spectra obtained from spectral fluorescence signals of the sediment sample. A factory spectrofluorometer coupled with an experimental fibre optic measurement system was used.
View Article and Find Full Text PDFSci Adv
January 2025
New Cornerstone Science Laboratory, Department of Physics, The University of Hong Kong, Hong Kong 999077, China.
Real multi-bandgap systems have non-abelian topological charges, with Euler semimetals being a prominent example characterized by real triple degeneracies (RTDs) in momentum space. These RTDs serve as "Weyl points" for real topological phases. Despite theoretical interest, experimental observations of RTDs have been lacking, and studies mainly focus on individual RTDs.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China.
This paper investigates the thermal effects in fused-tapered passive optical fibers under near-infrared absorption. The thermal effect is primarily caused by impurities, such as OH-, which absorb incident light and generate heat. Using the finite element method, the volume changes during fiber tapering were simulated, influencing power density and thermal distribution.
View Article and Find Full Text PDFArthrosc Tech
December 2024
Department of Orthopaedics, School of Medicine, Jichi Medical University, Shimotsuke, Japan.
Inside-out repair of meniscal tears is the gold standard surgical approach; however, its use is limited by the need for a posterior incision and neurovascular risk. In this Technical Report, we present details of the all-inside arthroscopic tie-grip approach for repairing a radial tear of the midbody of the lateral meniscus using an all-inside device (TRUESPAN) and a slotted cannula. In contrast to the inside-out approach, this technique helps reduce surgical invasiveness and provides stable fixation as the vertical mattress sutures bundle the circumferential fibers and act as rip stops for the horizontal sutures.
View Article and Find Full Text PDFLaryngoscope Investig Otolaryngol
February 2025
Objectives: This study aimed to investigate the histological and ultrastructural features of the elastic cartilage at the tip of the vocal process in the arytenoid cartilage, which is essential for laryngeal biomechanics.
Methods: Five larynges, including the vocal folds and epiglottis, were examined using transmission electron microscopy. The elastic cartilage at the tip of the vocal process was compared to the epiglottic cartilage within the same larynx to elucidate structural differences.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!