Acetyl-CoA carboxylase (ACC) 1 and ACC2 are essential rate-limiting enzymes that synthesize malonyl-CoA (M-CoA) from acetyl-CoA. ACC1 is predominantly expressed in lipogenic tissues and regulates the de novo lipogenesis flux. It is upregulated in the liver of patients with nonalcoholic fatty liver disease (NAFLD), which ultimately leads to the formation of fatty liver. Therefore, selective ACC1 inhibitors may prevent the pathophysiology of NAFLD and nonalcoholic steatohepatitis (NASH) by reducing hepatic fat, inflammation, and fibrosis. Many studies have suggested ACC1/2 dual inhibitors for treating NAFLD/NASH; however, reports on selective ACC1 inhibitors are lacking. In this study, we investigated the effects of compound-1, a selective ACC1 inhibitor for treating NAFLD/NASH, using preclinical in vitro and in vivo models. Compound-1 reduced M-CoA content and inhibited the incorporation of [C] acetate into fatty acids in HepG2 cells. Additionally, it reduced hepatic M-CoA content and inhibited de novo lipogenesis in C57BL/6J mice after a single dose. Furthermore, compound-1 treatment of 8 weeks in Western diet-fed melanocortin 4 receptor knockout mice-NAFLD/NASH mouse model-improved liver hypertrophy and reduced hepatic triglyceride content. The reduction of hepatic M-CoA by the selective ACC1 inhibitor was highly correlated with the reduction in hepatic steatosis and fibrosis. These findings support further investigations of the use of this ACC1 inhibitor as a new treatment of NFLD/NASH. SIGNIFICANCE STATEMENT: This is the first study to demonstrate that a novel selective inhibitor of acetyl-CoA carboxylase (ACC) 1 has anti-nonalcoholic fatty liver disease (NAFLD) and anti-nonalcoholic steatohepatitis (NASH) effects in preclinical models. Treatment with this compound significantly improved hepatic steatosis and fibrosis in a mouse model. These findings support the use of this ACC1 inhibitor as a new treatment for NAFLD/NASH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.121.000786 | DOI Listing |
Nat Commun
January 2025
Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
Ferroptosis is a newly identified programmed cell death induced by iron-driven lipid peroxidation and implicated as a potential approach for tumor treatment. However, emerging evidence indicates that hepatocellular carcinoma (HCC) cells are generally resistant to ferroptosis and the underlying molecular mechanism is poorly understood. Here, our study confirms that S100 calcium binding protein P (S100P), which is significantly up-regulated in ferroptosis-resistant HCC cells, efficiently inhibits ferroptosis.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Human Nutrition and Dietetics, University of Agriculture, Balicka 122, 30-149 Kraków, Poland.
Consuming food containing ingredients with a documented impact on lipid metabolism can help fight overweight and obesity. The simplest way to reduce the level of fatty acids is to block their synthesis or increase the rate of their degradation. This study aimed to determine the effect of resveratrol, , conjugated linoleic acid (CLA), , CLA, and various variants of their combinations on de novo fatty acid biosynthesis in 3T3-L1 adipocytes.
View Article and Find Full Text PDFJ Endocrinol Invest
December 2024
Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian, 116027, People's Republic of China.
Background: Hashimoto's thyroiditis (HT) is the most common autoimmune thyroid disease (AITD), which is distinguished by high thyroid peroxidase antibody (TPOAb) or thyroglobulin antibody (TgAb). The differentiation of CD4T cell subsets in patients with HT is imbalanced, with Treg cells decreased and Th17 cells abnormally activated. Fatty acid oxidation supports the differentiation of Th17 cells and induces inflammation, but the specific mechanism is still unknown.
View Article and Find Full Text PDFCancer Metab
November 2024
School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
Background: The metabolic pathway of de novo lipogenesis (DNL) is upregulated in fatty liver disease and liver cancer. Inhibitors of DNL are in development for the treatment of these disorders; however, our previous study showed that blocking DNL unexpectedly exacerbated liver tumorigenesis when liver acetyl-CoA carboxylase (ACC) 1 and 2 enzymes were deleted in mice treated with diethylnitrosamine (DEN) and fed high fat diet. Herein, we used 3 new approaches including ACC1 vs.
View Article and Find Full Text PDFMetab Eng
November 2024
Department of Chemical & Biomolecular Engineering, University of California, Irvine, CA, 92697-2580, USA. Electronic address:
The non-conventional yeast Kluyveromyces marxianus is a promising microbial host for industrial biomanufacturing. With the recent development of Cas9-based genome editing systems and other novel synthetic biology tools for K. marxianus, engineering of this yeast has become far more accessible.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!