We present a temperature-responsive spin column using an all-aqueous eluent. The method is intended as a simple sample preparation method for protein removal from serum, which is required for serum drug analysis. As packing materials for the spin column, we prepared two types of silica beads via surface-initiated radical polymerization. The large beads (diameter, 40-63 μm) were grafted with a temperature-responsive cationic copolymer, poly(N-isopropylacrylamide-co-N,N-dimethylaminopropyl acrylamide-co-n-butyl methacrylate) (P(NIPAAm-co-DMAPAAm-co-BMA)), and the small beads (diameter, 5 μm) were grafted with a temperature-responsive hydrophobic copolymer, P(NIPAAm-co-BMA). The beads were packed into the spin column as a double layer: P(NIPAAm-co-BMA) silica beads on the bottom and P(NIPAAm-co-DMAPAAm-co-BMA) silica beads on the top. The sample purification efficacy of the prepared spin column was evaluated on a model sample analyte (the antifungal drug voriconazole mixed with blood serum proteins). At 40 °C, the serum proteins and voriconazole were adsorbed on the prepared spin column via hydrophobic and electrostatic interactions. When the temperature was decreased to 4 °C, the adsorbed voriconazole was eluted from the column with the pure water eluent, while the serum proteins remained in the column. This temperature-responsive spin column realizes sample preparation simply by changing the temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2021.338806DOI Listing

Publication Analysis

Top Keywords

spin column
28
temperature-responsive spin
12
sample preparation
12
silica beads
12
serum proteins
12
column
9
all-aqueous eluent
8
beads diameter
8
grafted temperature-responsive
8
prepared spin
8

Similar Publications

Exosomes are natural membrane-enclosed nanovesicles (30-150 nm) involved in cell-cell communication. Recently, they have garnered considerable interest as nanocarriers for the controlled transfer of therapeutic agents to cells. Here, exosomes were derived from bone marrow mesenchymal stem cells using three different isolation methods.

View Article and Find Full Text PDF

Systematic optimisation of crude buccal swab lysate protocols for use with the ForenSeq™ DNA Signature Prep Kit.

Int J Legal Med

January 2025

Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa.

The ForenSeq™ DNA Signature Prep kit has not been thoroughly tested with crude buccal swab lysates in large-scale population studies using massively parallel sequencing (MPS). Commonly used lysis buffers for swabs intending to undergo direct polymerase chain reaction (PCR) are SwabSolution™ and STR GO! Lysis Buffers, and these have been successfully used to generate population data using capillary electrophoresis (CE) systems. In this study, we investigated the performance and optimisation of SwabSolution™ and STR GO! lysates with the ForenSeq™ DNA Signature Prep workflow and addressed the challenge of failed MPS profiles in initial trials.

View Article and Find Full Text PDF
Article Synopsis
  • Transforming waste plastics into valuable materials can be achieved by creating graphene-based single-atom catalysts using high-density polyethylene via catalytic pyrolysis.
  • The catalyst, featuring dispersed FeNCl sites, shows significantly improved performance compared to similar catalysts without chloride, due to enhanced conductivity and efficiency in activating peroxymonosulfate (PMS).
  • Techniques like Raman and infrared spectroscopy confirm that the catalyst efficiently degrades pollutants through a non-radical oxidation process, making it suitable for continuous water treatment applications.
View Article and Find Full Text PDF

Variant D antigens can cause variable serologic results when typing with Anti-D reagents. There is limited information regarding the ability of Anti-D reagents to differentiate between D variants defined by genotyping. This study was performed to determine if a panel of 20 U.

View Article and Find Full Text PDF

Evaluation of effectiveness of bacteriophage purification methods.

Virol J

December 2024

Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, 3550, Australia.

The use of bacteriophages for therapy has increased over the last decade. While there is need for clear regulatory pathways for bacteriophage approval for mainstream use in clinical practice, practitioners and patients have been able to access bacteriophage therapy under compassionate grounds and through magistral preparations. However, there is currently no standard for purifying these bacteriophages to ensure safety, and good manufacturing practice certification may not be achieved in these emergency uses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!