The Cellular Mechanisms of Dopamine Modulation on the Neuronal Network Oscillations in the CA3 Area of Rat Hippocampal Slices.

Neuroscience

Henan International-Joint Laboratory for Non-invasive Neural Modulation/The Key Laboratory for the Brain Research of Henan Province, Department of Physiology, Xinxiang Medical University, Xinxiang 453003, China. Electronic address:

Published: November 2021

Network oscillations at γ frequency band (30-80 Hz), generated by the interaction between inhibitory interneurons and excitatory neurons, have been proposed to be associated with higher brain functions such as learning and memory. Dopamine (DA), one of the major CNS transmitters, modulates hippocampal γ oscillations but the intracellular mechanisms involved remain elusive. In this study, we recorded kainate-induced γ oscillations in the CA3 area of rat hippocampal slices, and found that DA strongly enhanced γ power, which was largely blocked by dopamine receptor 1 (DR1) antagonist SCH23390, receptor tyrosine kinase (RTK) inhibitor UNC569 and ERK inhibitor U0126, partially blocked by D2/3R antagonist raclopride, PKA inhibitor H89 and PI3K inhibitor wortmannin, but not affected by AKT inhibitor TCBN or NMDAR antagonist D-AP5. Our results indicate that DA-mediated γ enhancement is involved in the activation of signaling pathway of DR1/2-RTK-ERK. Our data demonstrate a strong, rapid modulation of DA on hippocampal γ oscillations and provide a new insight into cellular mechanisms of DA-mediated γ oscillations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2021.09.005DOI Listing

Publication Analysis

Top Keywords

cellular mechanisms
8
network oscillations
8
oscillations ca3
8
ca3 area
8
area rat
8
rat hippocampal
8
hippocampal slices
8
hippocampal oscillations
8
oscillations
6
inhibitor
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!