Hematopoietic stem and progenitor cell (HSPC) mobilization into the blood occurs under normal physiological conditions and is stimulated in the clinic to enable the isolation of HSPCs for transplantation therapies. In the present study, we identify the tetraspanin CD82 as a novel regulator of HSPC mobilization. Using a global CD82 knockout (CD82KO) mouse, we measure enhanced HSPC mobilization after granulocyte-colony stimulating factor (G-CSF) or AMD3100 treatment, which we find is promoted by increased surface expression of the sphingosine 1-phosphate receptor 1 (S1PR) on CD82KO HSPCs. Additionally, we identify a disruption in S1PR internalization in CD82-deficient HSPCs, suggesting that CD82 plays a critical role in S1PR surface regulation. Finally, combining AMD3100 and anti-CD82 treatments, we detect enhanced mobilization of mouse HSPCs and human CD34+ cells in animal models. Together, these data provide evidence that CD82 is an important regulator of HSPC mobilization and suggests exploiting the CD82 scaffold as a therapeutic target to enhance stem cell isolation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514849 | PMC |
http://dx.doi.org/10.1016/j.stemcr.2021.08.009 | DOI Listing |
Nat Commun
January 2025
Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
The only cure of HIV has been achieved in a small number of people who received a hematopoietic stem cell transplant (HSCT) comprising allogeneic cells carrying a rare, naturally occurring, homozygous deletion in the CCR5 gene. The rarity of the mutation and the significant morbidity and mortality of such allogeneic transplants precludes widespread adoption of this HIV cure. Here, we show the application of CRISPR/Cas9 to achieve >90% CCR5 editing in human, mobilized hematopoietic stem progenitor cells (HSPC), resulting in a transplant that undergoes normal hematopoiesis, produces CCR5 null T cells, and renders xenograft mice refractory to HIV infection.
View Article and Find Full Text PDFLancet
November 2024
Division of Hematology, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Background: Transfusion-dependent β-thalassaemia (TDT) is a severe disease, resulting in lifelong blood transfusions, iron overload, and associated complications. Betibeglogene autotemcel (beti-cel) gene therapy uses autologous haematopoietic stem and progenitor cells (HSPCs) transduced with BB305 lentiviral vector to enable transfusion independence.
Methods: HGB-212 was a non-randomised, multicentre, single-arm, open-label, phase 3 study of beti-cel in patients with TDT conducted at eight centres in France, Germany, Greece, Italy, the UK, and the USA.
Stem Cell Rev Rep
October 2024
Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
Stem Cell Rev Rep
September 2024
Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland.
The liver-derived circulating in peripheral blood and intrinsic cell-expressed complement known as complosome orchestrate the trafficking of hematopoietic stem/progenitor cells (HSPCs) both during pharmacological mobilization and homing/engraftment after transplantation. Our previous research demonstrated that C3 deficient mice are easy mobilizers, and their HSPCs engraft properly in normal mice. In contrast, C5 deficiency correlates with poor mobilization and defects in HSPCs' homing and engraftment.
View Article and Find Full Text PDFBiomolecules
August 2024
Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave., St Louis, MO 63105, USA.
The treatment of patients diagnosed with hematologic malignancies typically includes hematopoietic stem cell transplantation (HSCT) as part of a therapeutic standard of care. The primary graft source of hematopoietic stem and progenitor cells (HSPCs) for HSCT is mobilized from the bone marrow into the peripheral blood of allogeneic donors or patients. More recently, these mobilized HSPCs have also been the source for gene editing strategies to treat diseases such as sickle-cell anemia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!