The novel coronavirus disease 2019 (Covid-19) first appeared in Wuhan and has so far killed more than four million people worldwide. Men are more affected than women by Covid-19, but the cellular and molecular mechanisms behind these differences are largely unknown. One plausible explanation is that differences in sex hormones could partially account for this distinct prevalence in both sexes. Accordingly, several papers have reported a protective role of 17β-estradiol during Covid-19, which might help explain why women appear less likely to die from Covid-19 than men. 17β-estradiol is the predominant and most biologically active endogenous estrogen, which signals through estrogen receptor α, estrogen receptor β, and G protein-coupled estrogen receptor 1. These receptors are expressed in mature cells from the innate and the adaptive immune system, particularly on dendritic cells (DCs), suggesting that estrogens could modulate their effector functions. DCs are the most specialized and proficient antigen-presenting cells, acting at the interface of innate and adaptive immunity with a powerful capacity to prime antigen-specific naive CD8+ T cells. DCs are richly abundant in the lung where they respond to viral infection. A relative increase of mature DCs in broncho-alveolar lavage fluids from Covid-19 patients has already been reported. Here we will describe how SARS-CoV-2 acts on DCs, the role of estrogen on DC immunobiology, summarise the impact of sex hormones on the immune response against Covid-19, and explore clinical trials regarding Covid-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8646421PMC
http://dx.doi.org/10.1002/rmv.2290DOI Listing

Publication Analysis

Top Keywords

estrogen receptor
12
dendritic cells
8
sex hormones
8
innate adaptive
8
cells dcs
8
covid-19
7
cells
5
estrogen
5
dcs
5
crosstalk estrogen
4

Similar Publications

Importance: Endocrine treatments, such as Tamoxifen (TAM) and/or Aromatase inhibitors (AI), are the adjuvant therapy of choice for hormone-receptor positive breast cancer. These agents are associated with menopausal symptoms, adversely affecting drug compliance. Topical estrogen (TE) has been proposed for symptom management, given its' local application and presumed reduced bioavailability, however its oncological safety remains uncertain.

View Article and Find Full Text PDF

Aggressive angiomyxoma of the vagina: A case report and literature review.

Medicine (Baltimore)

January 2025

Department of Internal Medicine, Division of Hematology and Oncology, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, Republic of Korea.

Rationale: Aggressive angiomyxoma (AAM) is an exceptionally rare mesenchymal tumor that predominantly manifests in the female genital organs during the reproductive age. Its rarity alone makes it a fascinating subject for study. The diagnosis of AAM necessitates differentiation from other benign or mesenchymal tumors and can be confirmed through immunohistochemistry (IHC) staining.

View Article and Find Full Text PDF

Purpose: To investigate whether hormone receptor-positive, human epidermal growth factor receptor 2-low (HR+HER2-low) versus HR+HER2-zero early breast cancers have distinct genomic and clinical characteristics.

Methods: This study included HR+, HER2-negative early breast cancers from patients enrolled in the phase III, randomized BIG 1-98 and SOFT clinical trials that had undergone tumor genomic sequencing. Tumors were classified HR+HER2-low if they had a centrally reviewed HER2 immunohistochemistry (IHC) score of 1+ or 2+ with negative in situ hybridization and HR+HER2-zero if they had an HER2 IHC score of 0.

View Article and Find Full Text PDF

Tamoxifen is one of the most frequently used endocrine medications for the treatment of estrogen receptor-positive (ER + ) breast cancer (BC). Unfortunately, tamoxifen resistance (TR) brings more challenges to the clinical treatment, and the mechanisms of TR have not yet been fully clarified. HGF/c-Met is closely associated with cancer metastasis, but whether it is involved in TR remains unclear.

View Article and Find Full Text PDF

Background: Current treatment strategies for hormone-dependent breast cancers, including adjuvant endocrine therapy, often fail due to persistence of breast cancer stem cells (brCSCs), which are significant contributors to tumor recurrence and treatment resistance. Therefore, gaining deeper insights into the molecular regulators driving breast cancer aggressiveness is important. Moreover, given the complexities and expenses involved in developing new pharmacological agents, the strategic repurposing of existing FDA-approved drugs to target these key molecular pathways presents a compelling approach for identifying novel therapeutic interventions aimed at mitigating tumor refractoriness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!