Through a combined approach of experiment and simulation, this study quantifies the role of entanglements in determining the mechanical properties of glassy polymer blends. Uniaxial extension experiments on 100-nm films containing a bidisperse mixture of polystyrene enable quantitative comparison with molecular dynamics (MD) simulations of a coarse-grained model for polymer glasses, where the bidisperse blends allow us to systematically tune the entanglement density of both systems. In the MD simulations, we demonstrate that not all entanglements carry substantial load at large deformation, and our analysis allows the development of a model to describe the number of effective, load-bearing entanglements per chain as a function of blend ratio. The film strength measured experimentally and the simulated film toughness are quantitatively described by a model that only accounts for load-bearing entanglements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8448454 | PMC |
http://dx.doi.org/10.1126/sciadv.abg9763 | DOI Listing |
Commun Biol
January 2025
Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK.
Form-function relationships often have tradeoffs: if a material is tough, it is often inflexible, and vice versa. This is particularly relevant for the elephant trunk, where the skin should be protective yet elastic. To investigate how this is achieved, we used classical histochemical staining and second harmonic generation microscopy to describe the morphology and composition of elephant trunk skin.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
Nanoconfinements are utilized to program how polymers entangle and disentangle as chain clusters to engineer pseudo bonds with tunable strength, multivalency, and directionality. When amorphous polymers are grafted to nanoparticles that are one magnitude larger in size than individual polymers, programming grafted chain conformations can "synthesize" high-performance nanocomposites with moduli of ≈25GPa and a circular lifecycle without forming and/or breaking chemical bonds. These nanocomposites dissipate external stresses by disentangling and stretching grafted polymers up to ≈98% of their contour length, analogous to that of folded proteins; use both polymers and nanoparticles for load bearing; and exhibit a non-linear dependence on composition throughout the microscopic, nanoscopic, and single-particle levels.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
ACS Appl Mater Interfaces
May 2024
Advanced Functional Polymers (AFP) Laboratory, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, Hasselt 3500, Belgium.
Tissue engineering and regenerative medicine are confronted with a persistent challenge: the urgent demand for robust, load-bearing, and biocompatible scaffolds that can effectively endure substantial deformation. Given that inadequate mechanical performance is typically rooted in structural deficiencies─specifically, the absence of energy dissipation mechanisms and network uniformity─a crucial step toward solving this problem is generating synthetic approaches that enable exquisite control over network architecture. This work systematically explores structure-property relationships in poly(ethylene glycol)-based hydrogels constructed utilizing thiol-yne chemistry.
View Article and Find Full Text PDFAdv Mater
May 2024
The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China.
Articular cartilage has an appropriate multilayer structure and superior tribological properties and provides a structural paradigm for design of lubricating materials. However, mimicking articular cartilage traits on prosthetic materials with durable lubrication remains a huge challenge. Herein, an ingenious three-in-one strategy is developed for constructing an articular cartilage-like bilayer hydrogel coating on the surface of ultra-high molecular weight polyethylene (BH-UPE), which makes full use of conceptions of interfacial interlinking, high-entanglement crosslinking, and interface-modulated polymerization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!