It is well known that the electrochemical performance of spinel LiMnO can be improved by Al doping. Herein, combining X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) with electron-beam (E-beam) irradiation techniques, the influence of Al doping on the structural evolution and stability improvement of the LiMnO cathode material is revealed. It is revealed that an appropriate concentration of Al ions could dope into the spinel structure to form a more stable LiAlMnO phase framework, which can effectively stabilize the surface and bulk structure by inhibiting the dissolution of Mn ions during cycling. The optimized LiAlMnO sample exhibits a superior capacity retention ratio of 80% after 1000 cycles at 10 C (1 C = 148 mA h g) in the voltage range of 3.0-4.5 V, which possesses an initial discharge capacity of 90.3 mA h g. Compared with the undoped LiMnO sample, the Al-doped sample also shows superior rate performance, especially the capacity recovery performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c11315 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Leibniz University Hanover: Leibniz Universitat Hannover, Institute for Solid State Physics, GERMANY.
Graphdiyne (GDY) has been considered a promising electrode material for application in electrochemical energy storage. However, studies on GDY featuring an ordered interlayer stacking are lacking, which is supposed to be another effective way to increase lithium binding sites and diffusion pathways. Herein, we synthesized a hydrogen-substituted GDY (HsGDY) with a highly-ordered AA-stacking structure via a facile alcohol-thermal method.
View Article and Find Full Text PDFAnal Methods
January 2025
School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
A label-free photoelectrochemical (PEC) sensor for detecting theophylline (TP) was exploited based on electrodes modified with a nanocomposite of polydopamine nanospheres (PDSs) and gold nanoparticles (AuNPs). PDS particles were prepared by oxidative autopolymerization, and their reducibility was utilized in one step to reduce the gold nanoparticles . The AuNPs-PDS/ZnS PEC sensor was constructed by electrochemical deposition and drop coating.
View Article and Find Full Text PDFNanoscale
January 2025
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
Due to their ease of synthesis and large specific surface area, Ni(OH) nanosheets have emerged as promising electrochemical sensing materials, attracting significant attention in recent years. Herein, a series of oxy-hydroxides based on Ni(OH) nanosheets, including NiO/Ni(OH)@NF and (MNi)O/Ni(OH)@NF (M = Co, Fe, or Cr), are successfully synthesized the electrochemical oxidation and incorporation strategies. Electrochemical tests demonstrate that these Ni(OH)-based oxy-hydroxides exhibit excellent electrochemical oxidation activity for glucose in alkaline electrolyte.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China.
Recently, photo-assisted electrocatalysis as an emerging catalytic approach that combines the technologies of photocatalysis and electrocatalysis has attracted great interest among researchers. Under this circumstance, the NiFe-LDH compounded with PbS based (PbS@NFHS) heterojunction with both photoactive and electrocatalytic properties was constructed for the first time through an ambient etching route and a subsequent low-temperature hydrothermal method. The as-prepared catalyst displayed a novel hierarchical 3D open structure based on nanosheets, which offered numerous electrochemically active sites, facilitated the swift diffusion of ions and enhanced both electrical conductivity and catalytic stability, thus significantly improving the catalytic performance.
View Article and Find Full Text PDFRSC Adv
January 2025
CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China.
A novel multilayer nanoflake structure of manganese oxide/graphene oxide (γ-MnO/GO) was fabricated a simple template-free chemical precipitation method, and the modified carbon felt (CF) electrode with γ-MnO/GO composite was used as an anode material for microbial fuel cells (MFCs). The characterization results revealed that the γ-MnO/GO composite has a novel multilayer nanoflake structure and offers a large specific surface area for bacterial adhesion. The electrochemical analyses demonstrated that the γ-MnO/GO composite exhibited excellent electrocatalytic activity and enhanced the electrochemical reaction rate and reduced the electron transfer resistance, consequently facilitating extracellular electron transfer (EET) between the anode and bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!