Identifying the molecular mechanisms contributing to phenotypic variation in natural populations is a major goal of molecular ecology. However, the multiple regulatory steps between genotype and phenotype mean that many potential mechanisms can lead to trait divergence. To date, the role of transcriptional regulation in local adaptation has received much focus, as we can readily measure mRNA quantity and have a reasonable grasp of how variation in the expression of many protein-coding genes can influence phenotype. Thus, studying the evolution of protein-coding gene mRNA abundance in candidate tissues has led to successes in detecting the molecular mechanisms underlying local adaptation (reviewed by Hill et al., 2021). However, the contribution of differential splicing of precursor mRNA (pre-mRNA) to adaptive differentiation, as well as the loci controlling this variation, remains largely unexplored in wild populations. In their "From the Cover'" article in this issue of Molecular Ecology, Jacobs and Elmer (2021) reanalyse muscle RNA sequencing (RNA-seq) data to quantify the relative contributions of variation in mRNA quantity (differentially expressed "DE" genes) and splice variant identity (differentially spliced "DS" genes) to parallel divergence of wild "benthic" and "pelagic" ecotypes of a salmonid fish, the Arctic charr (Salvelinus alpinus). They found little overlap in the identity and biological functions of DE and DS genes, suggesting that these two regulatory mechanisms act on different cellular traits to complementarily alter organismal phenotype. Furthermore, many DE and DS genes could be mapped to cis-acting QTL, arguing that some of this regulatory divergence is genetically based. DE and DS genes were also more likely to be "hub genes" than their nondivergent counterparts, hinting that this regulatory variation may have a variety of phenotypic effects. The comparison of three independently evolved pairs of benthic and pelagic charr uncovered greater than expected parallelism in both expression and splicing between ecotypes across different lakes, supporting a role for these molecular phenotypes in adaptive divergence. Overall, the findings of Jacobs and Elmer (2021) highlight the importance of alternative splicing as a potential mechanism underlying local adaptation and provide a framework for others hoping to make the most of their RNA-seq data.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.16177DOI Listing

Publication Analysis

Top Keywords

local adaptation
12
alternative splicing
8
molecular mechanisms
8
molecular ecology
8
mrna quantity
8
underlying local
8
jacobs elmer
8
elmer 2021
8
rna-seq data
8
genes
6

Similar Publications

Objective: The production of 3-dimensional models and materials according to preoperative virtual surgical planning is a time-consuming process and causes high costs. We aimed to demonstrate the navigation mediated reconstruction of the patients who underwent the removal of a tumoral mass in midfacial region according to their preoperatively prepared surgical plannings.

Study Design: Patients who underwent the removal of tumoral mass and reconstruction in their midfacial region were included in the study.

View Article and Find Full Text PDF

Introduction: Fear of recurrence is a transdiagnostic problem experienced by people with psychosis, which is associated with anxiety, depression and risk of future relapse events. Despite this, there is a lack of available psychological interventions for fear of recurrence, and psychological therapies for schizophrenia are often poorly implemented in general. However, low-intensity psychological therapy is available for people who experience fear of recurrence in the context of cancer, which means there is an opportunity to learn what has worked in a well-implemented psychological therapy to see if any learning can be adapted for schizophrenia care.

View Article and Find Full Text PDF

Background: While large language models like ChatGPT-4 have demonstrated competency in English, their performance for minority groups speaking underrepresented languages, as well as their ability to adapt to specific socio-cultural nuances and regional cuisines, such as those in Central Asia (e.g., Kazakhstan), still requires further investigation.

View Article and Find Full Text PDF

Burkholderia pseudomallei, a soil-borne bacterium that causes melioidosis, endemic in South and Southeast Asia and northern Australia, is now emerging in new regions. Since the 1990s, cases have been reported in French overseas departments, including Martinique and Guadeloupe in the Caribbean, and Reunion Island and Mayotte in the Indian Ocean, suggesting a local presence of the bacterium. Our phylogenetic analysis of 111 B.

View Article and Find Full Text PDF

Discovery of a Pseudomonas aeruginosa-specific small molecule targeting outer membrane protein OprH-LPS interaction by a multiplexed screen.

Cell Chem Biol

December 2024

Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:

The surge of antimicrobial resistance threatens efficacy of current antibiotics, particularly against Pseudomonas aeruginosa, a highly resistant gram-negative pathogen. The asymmetric outer membrane (OM) of P. aeruginosa combined with its array of efflux pumps provide a barrier to xenobiotic accumulation, thus making antibiotic discovery challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!