The purpose of this study is to develop a green and safe chitosan-based preservative which can be applied in strawberry preservation. Chitosan (CS) was treated by 2,2,6,6-tetramethylpiperidine oxygen radical/laccase oxidation system (TEMPO/laccase oxidation system), which was mainly used to prepare TEMPO/laccase chitosan (TLCS). Furthermore, on this basis, the structure and performance of TLCS were also studied. The results showed that compared with CS, the solubility of TLCS improved, and the kinetic viscosity reduced significantly. Next, a cinnamaldehyde-TEMPO/laccase chitosan (CIN-TLCS) antibacterial agent was prepared by covalently combining the aldehyde group in cinnamaldehyde (CIN) and the amino group in CS. It was found that CIN combined with TLCS through covalent bonds, which changed the structure and crystallinity of TLCS. In addition, the total antioxidant capacity of CIN-TLCS also improved, which was necessary for the application of CIN-TLCS in extending shelf life. Cytotoxicity experiments showed that CIN-TLCS had no cytotoxicity. Furthermore, strawberries were used to explore the actual bacteriostatic and fresh-keeping effects of CIN-TLCS. The experiment found that CIN-TLCS could maintain the freshness of strawberries at room temperature (23 ± 1°C) for 5 days and had positive effects on strawberry color, loss-weight rate, hardness and pH. These results showed that CIN-TLCS could be used as a potential preserving agent for fruit storage. PRACTICAL APPLICATION: To obtain a green, safe and effective food preservative, chitosan (CS) was modified by a 2,2,6,6-tetramethylpiperidine oxygen radical/laccase oxidation system (TEMPO/laccase oxidation system) to get TEMPO/laccase chitosan (TLCS) and cinnamic aldehyde-TEMPO/laccase chitosan (CIN-TLCS). At the same time, the structure and antibacterial properties of TLCS and CIN-TLCS were analyzed, and their possibility as a new green and safe strawberry preservative was studied. Compared with oxazolidine, imidazole and triazole commercial drugs, CIN-TLCS has the advantages of low price, no pollution, no cytotoxicity and no drug resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.15912DOI Listing

Publication Analysis

Top Keywords

oxidation system
16
green safe
12
system tempo/laccase
12
cin-tlcs
10
2266-tetramethylpiperidine oxygen
8
oxygen radical/laccase
8
radical/laccase oxidation
8
tempo/laccase oxidation
8
tempo/laccase chitosan
8
chitosan tlcs
8

Similar Publications

Objectives: To assess the influence of a handheld X-ray unit in the diagnosis of proximal caries lesions using different digital systems by comparing with a wall-mounted unit.

Methods: Radiographs of 40 human teeth were acquired using the Eagle X-ray handheld unit (Alliage, São Paulo, Brazil) set at 2.5 mA, 60 kVp and an exposure time of 0.

View Article and Find Full Text PDF

Background: Electromagnetic radiation (EMR) from wireless technology and mobile phones, operates at various frequencies. The present study analyses the major impact of short-term exposure to 2.4 GHz frequency EMR, using the two model systems chick embryos and SH-SY5Y cell lines.

View Article and Find Full Text PDF

The linear scaling divide-expand-consolidate (DEC) framework is expanded to include unrestricted Hartree-Fock references. By partitioning the orbital space and employing local molecular orbitals, the full molecular calculation can be performed as independent calculations on individual fragments, making the method well-suited for massively parallel implementations. This approach also incorporates error control through the fragment optimization threshold (FOT), which maintains precision and consistency throughout the calculations.

View Article and Find Full Text PDF

Receptors for the vasoactive adipokine apelin, termed APJ receptors, are G-protein-coupled receptors and are widely expressed throughout the cardiovascular system. APJ receptors can also signal via G-protein-independent pathways, including G-protein-coupled-receptor kinase 2 (GRK2), which inhibits nitric oxide synthase (eNOS) activity and nitric oxide (NO) production in endothelial cells. Apelin causes endothelium-dependent, NO-mediated relaxation of coronary arteries from normotensive animals, but the effects of activating APJ receptor signaling pathways in hypertensive coronary arteries are largely unknown.

View Article and Find Full Text PDF

Intestinal barrier damage causes an imbalance in the intestinal flora and microbial environment, promoting a variety of gastrointestinal diseases. This study aimed to explore the mechanism by which adipose-derived stem cells (ADSCs) repair intestinal barrier damage. The human colon adenocarcinoma cell line Caco-2 and rats were treated with lipopolysaccharide (LPS) to establish in vitro and in vivo models, respectively, of intestinal barrier damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!