Founder populations have long contributed to our knowledge of rare disease genes and phenotypes. From the pioneering work of Dr. Victor McKusick to today, research in these groups has shed light on rare recessive phenotypes, expanded the clinical spectrum of disease, and facilitated disease gene identification. Current clinical and research studies in these special groups augment the wealth of knowledge already gained, provide new insights into emerging problems such as variant interpretation and reduced penetrance, and contribute to the development of novel therapies for rare genetic diseases. Clinical developments over the past 30 years have altered the fundamental relationship with the Lancaster Plain communities: research has become more collaborative, and the knowledge imparted by these studies is now being harnessed to provide cutting-edge translational medicine to the very community of vulnerable individuals who need it most.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajmg.a.62489 | DOI Listing |
Sci Rep
January 2025
State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
Observational studies have reported an association between lipoprotein(a) (Lp(a)) and immune-mediated inflammatory diseases (IMIDs). This study used Mendelian Randomization (MR) and multivariable MR (MVMR) to explore the causal relationship between lipoprotein(a) [Lp(a)] and immune-mediated inflammatory diseases (IMIDs). We performed a bidirectional two-sample mendelian randomization analyses based on genome-wide association study (GWAS) summary statistics of Lp(a) and nine IMIDs, specifically celiac disease (CeD), Crohn's disease (CD), ulcerative colitis (UC), inflammatory bowel disease (IBD), multiple sclerosis (MS), psoriasis (Pso), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), and summary-level data for lipid traits.
View Article and Find Full Text PDFSci Rep
January 2025
Population Health Sciences, University of Bristol, Bristol, UK.
Multiple myeloma (MM) is an incurable blood cancer with unclear aetiology. Proteomics is a valuable tool in exploring mechanisms of disease. We investigated the causal relationship between circulating proteins and MM risk, using two of the largest cohorts with proteomics data to-date.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Research and Innovation Center, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China.
Investigating plasma proteomic signatures of dementia offers insights into its pathology, aids biomarker discovery, supports disease monitoring, and informs drug development. Here, we analyzed data from 48,367 UK Biobank participants with proteomic profiling. Using Cox and generalized linear models, we examined the longitudinal associations between proteomic signatures and dementia-related phenotypes.
View Article and Find Full Text PDFMicrob Pathog
January 2025
State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou National Laboratory, Guangzhou, Guangdong, China. Electronic address:
Background: The coexistence of tuberculosis (TB) and lung cancer (LC) is not rare, but their causal association are underexplored. This study aims to elucidate these bidirectional correlations and investigate the mediating effects of immunophenotypes and plasma metabolites.
Methods: Genetic variants for TB and LC were sourced from the IEU Open GWAS Project, while data for 731 immunophenotypes and 1400 plasma metabolites from previously published GWAS.
Cytokine
January 2025
Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China. Electronic address:
Compelling evidence suggests a significant association between antibody-mediated immune responses and multiple sclerosis (MS). However, the exact causal relationships between these immune responses and MS remain unclear. In this study, we conducted a comprehensive examination of the link between antibody-mediated immune responses and MS via Mendelian randomization (MR) analysis to identify specific infectious pathogens potentially involved in the onset and progression of MS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!