A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of integrating industrial and agricultural wastes on concrete performance with and without microbial activity. | LitMetric

Effect of integrating industrial and agricultural wastes on concrete performance with and without microbial activity.

Environ Sci Pollut Res Int

Industrial Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia.

Published: December 2022

Cement is an essential material used in constructional activities. An emerging concern in the industry however is the CO emissions, which are triggered by cement manufacturing units. These emissions can be controlled to some extent by not using cement exclusively and instead replacing a percentage of it with waste material with properties similar to cement. Electric arc furnace dust (EAFD) and rice straw ash (RSA) are waste materials from industrial and agricultural sources which also contain similar constituents that are present in cement. Thus, the objective of this study is to check the effect of EAFD and RSA on concrete properties with the application of Aspergillus niger and Bacillus megaterium. Taguchi's design of experiments has been utilised to explore the effect of operating parameters (i.e. EAFD and RSA replacement (5%, 10% and 15%), curing period of concrete cubes (7, 14 and 28 days) and cell count of fungus/bacteria (10, 10 and 10 CFU/ml)) on the compressive strength and water absorption capacity of concrete blocks in three different scenarios. Optimisation has then been carried out by using the multi-objective genetic algorithm to evaluate the maximum performance of concrete. However, the results of the study indicate best performance in the 2nd context where dust replacement, curing time and cell count were 5%, 18 days and 9.39 × 10 cells per ml of water, respectively, for concrete production utilising Aspergillus niger.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-16445-2DOI Listing

Publication Analysis

Top Keywords

industrial agricultural
8
eafd rsa
8
aspergillus niger
8
cell count
8
concrete
6
cement
5
integrating industrial
4
agricultural wastes
4
wastes concrete
4
concrete performance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!