We consider a power transmission system monitored using phasor measurement units (PMUs) placed at significant, but not all, nodes of the system. Assuming that a sufficient number of distinct single-line faults, specifically the pre-fault state and the (not cleared) post-fault state, are recorded by the PMUs and are available for training, we first design a comprehensive sequence of neural networks (NNs) locating the faulty line. Performance of different NNs in the sequence, including linear regression, feed-forward NNs, AlexNet, graph convolutional NNs, neural linear ordinary differential equations (ODEs) and neural graph-based ODEs, ordered according to the type and amount of the power flow physics involved, are compared for different levels of observability. Second, we build a sequence of advanced power system dynamics-informed and neural ODE-based machine learning schemes that are trained, given the pre-fault state, to predict the post-fault state and also, in parallel, to estimate system parameters. Finally, third and continuing to work with the first (fault localization) setting, we design an (NN-based) algorithm which discovers optimal PMU placement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8438307 | PMC |
http://dx.doi.org/10.3389/fdata.2021.692493 | DOI Listing |
Nature
June 2023
IBM Quantum, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA.
Quantum computing promises to offer substantial speed-ups over its classical counterpart for certain problems. However, the greatest impediment to realizing its full potential is noise that is inherent to these systems. The widely accepted solution to this challenge is the implementation of fault-tolerant quantum circuits, which is out of reach for current processors.
View Article and Find Full Text PDFFront Big Data
August 2021
Program in Applied Mathematics, University of Arizona, Tucson, AZ, United States.
We consider a power transmission system monitored using phasor measurement units (PMUs) placed at significant, but not all, nodes of the system. Assuming that a sufficient number of distinct single-line faults, specifically the pre-fault state and the (not cleared) post-fault state, are recorded by the PMUs and are available for training, we first design a comprehensive sequence of neural networks (NNs) locating the faulty line. Performance of different NNs in the sequence, including linear regression, feed-forward NNs, AlexNet, graph convolutional NNs, neural linear ordinary differential equations (ODEs) and neural graph-based ODEs, ordered according to the type and amount of the power flow physics involved, are compared for different levels of observability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!