A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrative Network-Based Analysis Reveals Gene Networks and Novel Drug Repositioning Candidates for Alzheimer Disease. | LitMetric

Integrative Network-Based Analysis Reveals Gene Networks and Novel Drug Repositioning Candidates for Alzheimer Disease.

Neurol Genet

Translational Neurogenomics Laboratory (Z.F.G., E.M.D.), QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Division of Genetic Medicine (E.R.G.), Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN; and Cellular and Molecular Neurodegeneration (A.W.), QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

Published: October 2021

Background And Objectives: To integrate genome-wide association study data with tissue-specific gene expression information to identify coexpression networks, biological pathways, and drug repositioning candidates for Alzheimer disease.

Methods: We integrated genome-wide association summary statistics for Alzheimer disease with tissue-specific gene coexpression networks from brain tissue samples in the Genotype-Tissue Expression study. We identified gene coexpression networks enriched with genetic signals for Alzheimer disease and characterized the associated networks using biological pathway analysis. The disease-implicated modules were subsequently used as a molecular substrate for a computational drug repositioning analysis, in which we (1) imputed genetically regulated gene expression within Alzheimer disease implicated modules; (2) integrated the imputed gene expression levels with drug-gene signatures from the connectivity map to identify compounds that normalize dysregulated gene expression underlying Alzheimer disease; and (3) prioritized drug compounds and mechanisms of action based on the extent to which they normalize dysregulated expression signatures.

Results: Genetic factors for Alzheimer disease are enriched in brain gene coexpression networks involved in the immune response. Computational drug repositioning analyses of expression changes within the disease-associated networks retrieved known Alzheimer disease drugs (e.g., memantine) as well as biologically meaningful drug categories (e.g., glutamate receptor antagonists).

Discussion: Our results improve the biological interpretation of genetic data for Alzheimer disease and provide a list of potential antidementia drug repositioning candidates for which the efficacy should be investigated in functional validation studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8441674PMC
http://dx.doi.org/10.1212/NXG.0000000000000622DOI Listing

Publication Analysis

Top Keywords

alzheimer disease
32
drug repositioning
20
gene expression
16
coexpression networks
16
repositioning candidates
12
gene coexpression
12
alzheimer
9
gene
8
candidates alzheimer
8
disease
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!