Injury to the central nervous system is characterized by damage that spreads from the initial point of impact into the surrounding adjacent tissue, in a phenomenon referred to as secondary degeneration. The optic nerve can be used to effectively model injury and secondary degeneration to white matter tracts. Partial transection of the dorsal aspect of the nerve leaves the ventral aspect initially undamaged but vulnerable to secondary degeneration, allowing study of tissue exclusively vulnerable to secondary degeneration. Thus the partial optic nerve transection model of secondary degeneration is a valuable tool to study the pathology of spreading damage following neurotrauma and can be used to assess potential efficacy of therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8342097 | PMC |
http://dx.doi.org/10.21769/BioProtoc.3118 | DOI Listing |
BMJ Case Rep
January 2025
Department of Trauma and Orthopaedics, Royal Free London NHS Foundation Trust, London, UK.
Ganglion cysts are commonly found in areas of constant mechanical stress such as the joints and tendons of the wrist or hand as well as the anterior aspect of the ankle. In the knee, parameniscal cysts are often encountered secondary to meniscal tears or articular degeneration. Intra-articular ganglion cysts are uncommon and often arise from the cruciate ligaments and are found in the intercondylar notch.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Joseph Maxwell Cleland Atlanta VA Medical Center, Decatur, GA 30033, USA; Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA. Electronic address:
There is currently no cure or disease-modifying treatment for post-traumatic osteoarthritis (PTOA). This study aims to assess the efficacy of dimethyl fumarate (DMF), a US-FDA approved drug for multiple sclerosis, as a treatment for PTOA. PTOA was induced in male Lewis rats by medial meniscal transection (MMT) surgery, and DMF was intra-articularly administered once, one week following surgery.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece.
Paraneoplastic cerebellar degeneration (PCD) is an inflammatory autoimmune process caused by onconeural antibodies directed against cerebellar Purkinje cells. In most cases, prognosis is poor as disease progression leads to pancerebellar dysfunction and permanent neurological damage. Through this case report, we aim to highlight the clinical presentation, diagnostic process, and therapeutic implications associated with PCD secondary to SCLC.
View Article and Find Full Text PDFGeorgian Med News
November 2024
1Department of biology, College of Education for Women, University of Kirkuk, Iraq.
Background: Botulinum toxin is an attenuated neurotoxin of Clostridium Botulinum gram positive bacterial, which is used in medication sialorrhea, cervical dystonia, hyperhidrosis and non-surgical cosmetic operation (aesthetic) such as facial wrinkles and reduced the bulky appearance hypertrophied of masseter muscle. This study was designed to revealed the effect of zygomiticus inoculation of botulinum toxin B in zygomatic muscle of rats on zygomatic bone.
Methods: A total of 25 male albino rats (200-260 gm) were injected facial intramuscular by a single dose of 2.
J Neurosurg
January 2025
1Department of Bioengineering, George Mason University, Fairfax, Virginia.
Objective: The complex mix of factors, including hemodynamic forces and wall remodeling mechanisms, that drive intracranial aneurysm growth is unclear. This study focuses on the specific regions within aneurysm walls where growth occurs and their relationship to the prevalent hemodynamic conditions to reveal critical mechanisms leading to enlargement.
Methods: The authors examined hemodynamic models of 67 longitudinally followed aneurysms, identifying 88 growth regions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!